Polymer-assisted ureolytic microbially induced carbonate precipitation: mechanisms, efficiency optimization, and bio-cementation applications

Algaifi, H.A., Abu Bakar, S., Sam, A.R.M., et al. (2020). Insight into the role of microbial calcium carbonate and the factors involved in self-healing concrete. Constr. Build. Mater. 254. https://doi.org/10.1016/j.conbuildmat.2020.119258

Almajed, A., Abbas, H., Arab, M., Alsabhan, A., Hamid, W., Al-Salloum, Y. (2020). Enzyme-Induced Carbonate Precipitation (EICP)-Based methods for ecofriendly stabilization of different types of natural sands. J. Cleaner Prod. 274. https://doi.org/10.1016/j.jclepro.2020.122627

Almajed, A., Lemboye, K., Moghal, A.A.B. (2022). A Critical Review on the Feasibility of Synthetic Polymers Inclusion in Enhancing the Geotechnical Behavior of Soils. Polymers 14(22). https://doi.org/10.3390/polym14225004

Ashraf, M.S., Shah, M.U.H., Bokhari, A., Hasan, M. (2021). Less is more: Optimising the biocementation of coastal sands by reducing influent urea through response surface method. J. Cleaner Prod. 315. https://doi.org/10.1016/j.jclepro.2021.128208

Bayer IS, Ghosh A, Labriola M et al (2013) Fabrication of bionanocomposites comprising flat nanocrystals of calcium in collagen fibers exhibiting hardness comparable to metal. RSC Adv 3(43):20315–20323. https://doi.org/10.1039/c3ra43121e

Article  CAS  Google Scholar 

Bernardi D, DeJong JT, Montoya BM, Martinez BC (2014) Bio-bricks: Biologically cemented sandstone bricks. Constr Build Mater 55:462–469. https://doi.org/10.1016/j.conbuildmat.2014.01.019

Article  Google Scholar 

Bhaskar S, Hossain KMA, Lachemi M, Wolfaardt G, Kroukamp MO (2017) Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Cement Concrete Comp 82:23–33. https://doi.org/10.1016/j.cemconcomp.2017.05.013

Article  CAS  Google Scholar 

Boquera, L., Olacia, E., Fabiani, C., et al. (2021). Thermo-acoustic and mechanical characterization of novel bio-based plasters: The valorisation of lignin as by-product from biomass extraction for green building applications. Constr. Build. Mater. 278. https://doi.org/10.1016/j.conbuildmat.2021.122373

Borhan, T.M., Al Karawi, R.J. (2020). Experimental investigations on polymer modified pervious concrete. Case Stud. Constr. Mat. 12. https://doi.org/10.1016/j.cscm.2020.e00335

Brondi, M., Florencio, C., Mattoso, L., Ribeiro, C., Farinas, C. (2022). Encapsulation of Trichoderma harzianum with nanocellulose/carboxymethyl cellulose nanocomposite. Carbohyd. Polym. 295. https://doi.org/10.1016/j.carbpol.2022.119876

Bu, C.M., Wen, K.J., Liu, S.H., Ogbonnaya, U., Li, L. (2018). Development of bio-cemented constructional materials through microbial induced calcite precipitation. Mater. Struct. 51(1). https://doi.org/10.1617/s11527-018-1157-4

Bundur ZB, Kirisits MJ, Ferron RD (2017) Use of pre-wetted lightweight fine expanded shale aggregates as internal nutrient reservoirs for microorganisms in bio-mineralized mortar. Cement Concrete Comp 84:167–174. https://doi.org/10.1016/j.cemconcomp.2017.09.003

Article  CAS  Google Scholar 

Butler MF, Frith WJ, Rawlins C, Weaver AC, Heppenstall-Butler M (2009) Hollow Calcium Carbonate Microsphere Formation in the Presence of Biopolymers and Additives. Cryst Growth des 9(1):534–545. https://doi.org/10.1021/cg8008333

Article  CAS  Google Scholar 

Chang I, Cho G-C (2019) Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay. Acta Geotech 14(2):361–375. https://doi.org/10.1007/s11440-018-0641-x

Article  Google Scholar 

Chang, I., Im, J., Cho, G.C. (2016). Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering. Sustainability 8(3). https://doi.org/10.3390/su8030251

Chang I, Im J, Prasidhi AK, Cho G-C (2015) Effects of Xanthan gum biopolymer on soil strengthening. Constr Build Mater 74:65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026

Article  Google Scholar 

Chen Y, Zheng Y, Zhou Y et al (2023) Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and self-healing capability. Nat Commun 14(1):3438. https://doi.org/10.1038/s41467-023-39235-5

Article  CAS  Google Scholar 

Cheng, L., Afur, N., Shahin, M.A. (2021). Bio-Cementation for Improving Soil Thermal Conductivity. Sustainability 13(18). https://doi.org/10.3390/su131810238

Cheng, L., Kobayashi, T., Shahin, M.A. (2020). Microbially induced calcite precipitation for production of "bio-bricks" treated at partial saturation condition. Constr. Build. Mater. 231. https://doi.org/10.1016/j.conbuildmat.2019.117095

Cheng L, Shahin MA, Chu J (2019) Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotech 14(3):615–626. https://doi.org/10.1007/s11440-018-0738-2

Article  Google Scholar 

Choi, S.-G., Chang, I., Lee, M., Lee, J.-H., Han, J.-T., Kwon, T.-H. (2020). Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Constr. Build. Mater. 246. https://doi.org/10.1016/j.conbuildmat.2020.118415

Choi SG, Chu J, Brown RC, Wang KJ, Wen ZY (2017) Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derived from Pyrolysis of Lignocellulosic Biomass. ACS Sustainable Chem Eng 5(6):5183–5190. https://doi.org/10.1021/acssuschemeng.7b00521

Article  CAS  Google Scholar 

Comadran-Casas, C., Schaschke, C.J., Akunna, J.C., Jorat, M.E. (2022). Cow urine as a source of nutrients for Microbial-Induced Calcite Precipitation in sandy soil. J. Environ. Manage. 304. https://doi.org/10.1016/j.jenvman.2021.114307

Cooper JAG, Green AN, Wiles EA (2017) Beachrock morphology and genesis on a paraglacial beach. Sediment Geol 360:47–53. https://doi.org/10.1016/j.sedgeo.2017.08.005

Article  CAS  Google Scholar 

Dagliya, M., Satyam, N., Garg, A. (2022). Experimental Study on Optimization of Cementation Solution for Wind-Erosion Resistance Using the MICP Method. Sustainability 14(3). https://doi.org/10.3390/su14031770

Dagliya M, Satyam N, Garg A (2023) Optimization of growth medium for microbially induced calcium carbonate precipitation (MICP) treatment of desert sand. J Arid Land 15(7):797–811. https://doi.org/10.1007/s40333-023-0018-3

Article  Google Scholar 

Daniele MA, North SH, Naciri J et al (2013) Rapid and Continuous Hydrodynamically Controlled Fabrication of Biohybrid Microfibers. Adv Funct Mater 23(6):698–704. https://doi.org/10.1002/adfm.201202258

Article  CAS  Google Scholar 

De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concrete Res 38(7):1005–1014. https://doi.org/10.1016/j.cemconres.2008.03.005

Article  CAS  Google Scholar 

Deng, X.J., Li, Y., Liu, H., et al. (2021). Examining Energy Consumption and Carbon Emissions of Microbial Induced Carbonate Precipitation Using the Life Cycle Assessment Method. Sustainability 13(9). https://doi.org/10.3390/su13094856

Deng, X.J., Yuan, Z.X., Li, Y., Liu, H., Feng, J.Y., de Wit, B. (2020). Experimental study on the mechanical properties of microbial mixed backfill. Constr. Build. Mater. 265. https://doi.org/10.1016/j.conbuildmat.2020.120643

Dikshit, R., Gupta, N., Dey, A., Viswanathan, K., Kumar, A. (2022). Microbial induced calcite precipitation can consolidate martian and lunar regolith simulants. PLoS One 17(4). https://doi.org/10.1371/journal.pone.0266415

Du, C.B., Huang, H.J., Yi, F., Cheng, C.W., Liu, Y. (2024). Preparation of an environment-friendly microbial limestone dust suppressant and its dust suppression mechanism. Environ. Geochem. Health 46(10). https://doi.org/10.1007/s10653-024-02167-0

Dubey, A.A., Dhami, N.K., Ravi, K., Mukherjee, A. (2023). Erosion mitigation with biocementation: a review on applications, challenges, & future perspectives. Rev. Environ. Sci. Bio.. https://doi.org/10.1007/s11157-023-09674

Dubey AA, Hooper-Lewis J, Ravi K, Dhami NK, Mukherjee A (2022) Biopolymer-biocement composite treatment for stabilisation of soil against both current and wave erosion. Acta Geotech 17(12):5391–5410. https://doi.org/10.1007/s11440-022-01536-2

Article  Google Scholar 

Dubey, A.A., Ravi, K., Shahin, M.A., Dhami, N.K., Mukherjee, A. (2021). Bio-composites treatment for mitigation of current-induced riverbank soil erosion. Sci. Total Environ. 800. https://doi.org/10.1016/j.scitotenv.2021.149513

Engbert, A., Plank, J. (2020). Templating effect of alginate and related biopolymers as hydration accelerators for calcium alumina cement - A mechanistic study. Mater. Des. 195. https://doi.org/10.1016/j.matdes.2020.109054

Ersan YC, Da Silva FB, Boon N, Verstraete W, De Belie N (2015) Screening of bacteria and concrete compatible protection materials. Constr Build Mater 88:196–203. https://doi.org/10.1016/j.conbuildmat.2015.04.027

Article  Google Scholar 

Farajnia, A., Shafaat, A., Farajnia, S., Sartipipour, M., Tirkolaei, H.K. (2022). The efficiency of ureolytic bacteria isolated from historical adobe structures in the production of bio-bricks. Constr. Build. Mater. 317. https://doi.org/10.1016/j.conbuildmat.2021.125868

Feng, J., Rohaizat, R.E.B., Qian, S. (2022). Polydopamine@carbon nanotube reinforced and calcium sulphoaluminate coated hydrogels encapsulating bacterial spores for self-healing cementitious composites. Cement Concrete Comp. 133. https://doi.org/10.1016/j.cemconcomp.2022.104712

Feng Z, Li X, Shao X, Wang L (2023) Preferred injection method and curing mechanism analysis for the curing of loose Pisha sandstone based on microbially induced calcite precipitation. Environ Sci Pollut R 30(5):12005–12019. https://doi.org/10.1007/s11356-022-22742-1

Article  CAS  Google Scholar 

Ferris FG, Stehmeier LG, Kantzas A, Mourits FM (1996) Bacteriogenic mineral plugging. J Can Petrol Technol 35(8):56–61. https://doi.org/10.2118/96-08-06

Article  CAS  Google Scholar 

Gao, J., Jin, P., Zhang, Y., Dong, H., Wang, R. (2022). Fast-responsive capsule based on two soluble components for self-healing concrete. Cement Concrete Comp. 133. https://doi.org/10.1016/j.cemconcomp.2022.104711

Gao, M.M., Guo, J., Cao, H., et al. (2020). Immobilized bacteria with pH-response hydrogel for self-healing of concrete. J. Environ. Manage. 261. https://doi.org/10.1016/j.jenvman.2020.110225

Gao Y, Hang L, He J, Chu J (2019) Mechanical behaviour of biocemented sands at various treatment levels and relative densities. Acta Geotech 14(3):697–707. https://doi.org/10.1007/s11440-018-0729-3

Article  Google Scholar 

Gat D, Ronen Z, Tsesarsky M (2016) Soil Bacteria Population Dynamics Following Stimulation for Ureolytic Microbial-Induced CaCO3 Precipitation. Environ Sci Technol 50(2):616–624. https://doi.org/10.1021/acs.est.5b04033

Article  CAS  Google Scholar 

Ghalandarzadeh, S., Maghoul, P., Ghalandarzadeh, A., Courcelles, B. (2024). Effect of nanoparticle-enhanced biocementation in kaolinite clay by microbially induced calcium carbonate precipitation. Constr. Build. Mater. 414. https://doi.org/10.1016/j.conbuildmat.2024.134939

Gowthaman, S., Iki, T., Nakashima, K., Ebina, K., Kawasaki, S. (2019). Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region. SN Appl. Sci. 1(11). https://doi.org/10.1007/s42452-019-1508-y

Gowthaman, S., Yamamoto, M., Nakashima, K., Ivanov, V., Kawasaki, S. (2021). Calcium phosphate biocement using bone meal and acid urease: An eco-friendly approach for soil improvement. J. Cleaner Prod. 319. https://doi.org/10.1016/j.jclepro.2021.128782

Gupta S, Kua HW, Pang SD (2018) Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration. Cement Concrete Comp 86:238–254. https://doi.org/10.1016/j.cemconcomp.2017.11.015

Article  CAS  Google Scholar 

Hamdan, N., Zhao, Z., Mujica, M., Kavazanjian, E., Jr., He, X. (2016). Hydrogel-Assisted Enzyme-Induced Carbonate Mineral Precipitation. J. Mater. Civil eng. 28(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001604

Hataf N, Ghadir P, Ranjbar N (2018) Investigation of soil stabilization using chitosan biopolymer. J Cleaner Prod 170:1493–1500. https://doi.org/10.1016/j.jclepro.2017.09.256

Article  CAS  Google Scholar 

He, J., Gao, Y.F., Gu, Z.X., Chu, J., Wang, L.Y. (2020). Characterization of Crude Bacterial Urease for CaCO3 Precipitation and Cementation of Silty Sand. J. Mater. Civil eng. 32(5). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100

He Z, Shen A, Guo Y et al (2019) Cement-based materials modified with superabsorbent polymers: A review. Constr Build Mater 225:569–590. https://doi.org/10.1016/j.conbuildmat.2019.07.139

Article  CAS  Google Scholar 

Henze J, Randall DG (2018) Microbial induced calcium carbonate precipitation at elevated pH values (> 11) using Sporosarcina pasteurii. J Environ Chem Eng 6(4):5008–5013. https://doi.org/10.1016/j.jece.2018.07.046

Article  CAS  Google Scholar 

Heveran CM, Williams SL, Qiu JS et al (2020) Biomineralization and Successive Regeneration of Engineered Living Building Materials. Matter 2(2):481–494. https://doi.org/10.1016/j.matt.2019.11.016

Article 

Comments (0)

No login
gif