Aguado D, Barat R, Bouzas A, Seco A, Ferrer J (2019) P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Sci Tot Environ 672:88–96. https://doi.org/10.1016/j.scitotenv.2019.03.485
Aka RJN, Hossain M, Yuan Y, Agyekum-Oduro E, Zhan Y, Zhu J, Wu S (2023) Nutrient recovery through struvite precipitation from anaerobically digested poultry wastewater in an air-lift electrolytic reactor: process modeling and cost analysis. Chem Eng J 465:142825. https://doi.org/10.1016/j.cej.2023.142825
al Rawashdeh R, Maxwell P (2011) The evolution and prospects of the phosphate industry. Miner Econ 24:15–27. https://doi.org/10.1007/s13563-011-0003-8
Al-Mallahi J, Sürmeli RÖ, Çalli B (2020) Recovery of phosphorus from liquid digestate using waste magnesite dust. J Clean Prod 272:122616. https://doi.org/10.1016/j.jclepro.2020.122616
Aoun M, Arnaudguilhem C, El Samad O, Khozam RB, Lobinski R (2015) Impact of a phosphate fertilizer plant on the contamination of marine biota by heavy elements. Environ Sci Pollut Res 22:14940–14949. https://doi.org/10.1007/s11356-015-4691-4
Barbosa SG, Peixoto L, Meulman B, Alves MM, Pereira MA (2016) A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chem Eng J 298:146–153. https://doi.org/10.1016/j.cej.2016.03.148
Battaz S, Djazi F, Allal H, Trabelsi I, Abdellah Z, Benrabaa R, Hamzaoui AH (2024) Phosphorus recovery as struvite from wastewater by using seawater, brine and natural brine. Desalin Water Treat 317:100082. https://doi.org/10.1016/j.dwt.2024.100082
Baveye PC (2015) Looming scarcity of phosphate rock and intensification of soil phosphorus research. Rev Bras Cienc Solo 39:637–642. https://doi.org/10.1590/01000683rbcs20140819
Bell LC, Mika H, Kruger BJ (1978) Synthetic hydroxyapatite-solubility product and stoichiometry of dissolution. Arch Oral Biol 23:329–336. https://doi.org/10.1016/0003-9969(78)90089-4
Bhuiyan MIH, Mavinic DS, Beckie RD (2007) A solubility and thermodynamic study of struvite. Environ Technol 28:1015–1026. https://doi.org/10.1080/09593332808618857
Boer MA, Wolzak L, Slootweg JC (2018) Phosphorus: reserves, production, and applications. In: Ohtake H, Tsuneda S (eds) Phosphorus recovery and recycling. Springer Singapore, Singapore, pp 75–100. https://doi.org/10.1007/978-981-10-8031-9_5
Bosch C (1932) The development of the chemical high pressure method during the establishment of the new ammonia industry. Nobel Prize Lecture. https://www.nobelprize.org/uploads/2018/06/bosch-lecture.pdf. Accessed 02 Apr 2025
Bradford-Hartke Z, Razmjou A, Gregory L (2021) Factors affecting phosphorus recovery as struvite: effects of alternative magnesium sources. Desalination 504:114949. https://doi.org/10.1016/j.desal.2021.114949
Chu W, Shi Y, Zhang L (2022) Recovery of phosphorus in wastewater in the form of polyphosphates: a review. Processes 10:144. https://doi.org/10.3390/pr10010144
Cordell D, Rosemarin A, Schröder JJ, Smit AL (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84:747–758. https://doi.org/10.1016/j.chemosphere.2011.02.032
Crutchik D, Rodrigues S, Ruddle D, Garrido JM (2018) Evaluation of a low-cost magnesium product for phosphorus recovery by struvite crystallization. J Chem Technol Biotechnol 93:1012–1021. https://doi.org/10.1002/jctb.5453
Cullen N, Baur R, Schauer P (2013) Three years of operation of North America’s first nutrient recovery facility. Water Sci Technol 68:763–768. https://doi.org/10.2166/wst.2013.260
Daneshgar S, Buttafava A, Callegari A, Capodaglio AG (2018) Simulations and laboratory tests for assessing phosphorus recovery efficiency from sewage sludge. Resources 7:54. https://doi.org/10.3390/resources7030054
Daneshgar S, Vanrolleghem PA, Vaneeckhaute C, Buttafava A, Capodaglio AG (2019) Optimization of P compounds recovery from aerobic sludge by chemical modeling and response surface methodology combination. Sci Tot Environ 668:668–677. https://doi.org/10.1016/j.scitotenv.2019.03.055
Dockhorn T (2009) About the economy of phosphorus recovery. In: Ashley K, Mavinic D, Koch F (eds) International conference on nutrient recovery from wastewater streams. IWA Publishing, Vancouver, pp 145–158. https://doi.org/10.2166/9781780401805
Du J, Waite TD, Feng J, Lei Y, Tang W (2023) Coupled electrochemical methods for nitrogen and phosphorus recovery from wastewater: a review. Environ Chem Lett 21:885–909. https://doi.org/10.1007/s10311-023-01561-x
Edixhoven JD, Gupta J, Savenije HHG (2014) Recent revisions of phosphate rock reserves and resources: a critique. Earth Syst Dyn 5:491–507. https://doi.org/10.5194/esd-5-491-2014
Egner S, Brynioc D (2007) Reaktor zur Gewinnung von Magnesiumammoniumphosphat und Verfahren zur Gewinnung von Magnesiumammoniumphosphat aus Gülle oder ammoniumhaltigen Abgasen, Patent nº 102005034138, 2007
Enyemadze I, Momade FWY, Oduro-Kwarteng S, Essandoh H (2021) Phosphorus recovery by struvite precipitation: a review of the impact of calcium on struvite quality. J Water Sanit Hyg Dev 11:706–718. https://doi.org/10.2166/washdev.2021.078
Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639. https://doi.org/10.1038/ngeo325
Etter B, Tilley E, Khadka R, Udert KM (2011) Low-cost struvite production using source-separated urine in Nepal. Water Res 45:852–862. https://doi.org/10.1016/j.watres.2010.10.007
Fattah KP, Mavinic DS, Koch FA, Jacob C (2008) Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant. J Environ Sci Health Part A 43:756–764. https://doi.org/10.1080/10934520801960052
Fattah KP, Sinno S, Atabay S, Khan Z, Al-Dawood Z, Yasser AK, Temam R (2022) Impact of magnesium sources for phosphate recovery and/or removal from waste. Energies 15:4585. https://doi.org/10.3390/en15134585
Fayiga AO, Nwoke OC (2016) Phosphate rock: origin, importance, environmental impacts and future roles. Environ Rev 24:403–415. https://doi.org/10.1139/er-2016-0003
Ferraro A, Sario S, Attanasio A, Capua F, Gorgoglione A, Fratino U, Mascolo MC, Pirozzi F, Trancone G, Spasiano D (2023) Phosphorus recovery as struvite and hydroxyapatite from the liquid fraction of municipal sewage sludge with limited magnesium addition. J Environ Qual 52:584–595. https://doi.org/10.1002/jeq2.20446
Gunay A, Karadag D, Tosun I, Ozturk M (2008) Use of magnesit as a magnesium source for ammonium removal from leachate. J Hazard Mater 156:619–623. https://doi.org/10.1016/j.jhazmat.2007.12.067
Gysin A, Lycke D, Wirtel S (2018) The Pearl® and WASSTRIP® processes (Canada). In: Schaum C (ed) Phosphorus: polluter and resource of the future—removal and recovery from wastewater. IWA Publishing, London, pp 359–365. https://doi.org/10.2166/9781780408361_359
Haber F (1920) The synthesis of ammonia from its elements. Nobel Prize Lecture. https://www.nobelprize.org/uploads/2018/06/haber-lecture.pdf. Accessed 02 Apr 2025
He X, Shi S, Huang W, Fan X, Zhou J, Chen Y, Wang Y (2023) A novel Electrolysis-integrated anammox system for intensified nitrogen removal and simultaneous phosphorus recovery as vivianite. Chem Eng J 466:143299. https://doi.org/10.1016/j.cej.2023.143299
Heraldy E, Rahmawati F, Heriyanto PDP (2017) Preparation of struvite from desalination waste. J Environ Chem Eng 5:1666–1675. https://doi.org/10.1016/j.jece.2017.03.005
Herring JR, Fantel RJ (1993) Phosphate rock demand into the next century: impact on world food supply. Nat Resour Res 2:226–246. https://doi.org/10.1007/BF02257917
Huang HM, Xiao XM, Yang LP, Yan B (2010) Removal of ammonium as struvite using magnesite as a source of magnesium ions. Water Pract Technol 5:wpt2010007. https://doi.org/10.2166/wpt.2010.007
Comments (0)