Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol. 2016. https://doi.org/10.1038/nri.2016.123.
Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Investig. 2008;118(11):3546–56. https://doi.org/10.1172/JCI36130.
Article CAS PubMed PubMed Central Google Scholar
Gulati K, Guhathakurta S, Joshi J, Rai N, Ray A. Cytokines and their role in health and disease: a brief overview. MOJ Immunol. 2016;4(2):00121. https://doi.org/10.15406/MOJI.2016.04.00121.
Zhou Y, Hong Y, Huang H. Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press Res. 2016;41(6):901–10. https://doi.org/10.1159/000452591.
Article CAS PubMed Google Scholar
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34. https://doi.org/10.1016/J.CELL.2010.02.016.
Article CAS PubMed PubMed Central Google Scholar
Mishra A, Kim HJ, Shin AH, Thayer SA. Synapse loss induced by interleukin-1β requires pre- and post-synaptic mechanisms. J Neuroimmune Pharmacol. 2012;7(3):571–8. https://doi.org/10.1007/S11481-012-9342-7.
Article PubMed PubMed Central Google Scholar
Lopez-Ramirez MA, Fischer R, Torres-Badillo CC, Davies HA, Logan K, Pfizenmaier K, Male DK, Sharrack B, Romero IA. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J Immunol. 2012;189(6):3130–9. https://doi.org/10.4049/JIMMUNOL.1103460.
Article CAS PubMed Google Scholar
Rochfort KD, Cummins PM. The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans. 2015;43(4):702–6. https://doi.org/10.1042/BST20140319.
Article CAS PubMed Google Scholar
Paradkar PH, Joshi JV, Mertia PN, Agashe SV, Vaidya RA. Role of cytokines in genesis, progression and prognosis of cervical cancer. Asian Pac J Cancer Prev APJCP. 2014;15(9):3851–64. https://doi.org/10.7314/APJCP.2014.15.9.3851.
Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, Balk SP, O’Shea D, O’Farrelly C, Exley MA. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity. 2012;37(3):574–87. https://doi.org/10.1016/J.IMMUNI.2012.06.016.
Article CAS PubMed PubMed Central Google Scholar
Shi J, Fan J, Su Q, Yang Z. Cytokines and abnormal glucose and lipid metabolism. Front Endocrinol. 2019;10:703. https://doi.org/10.3389/FENDO.2019.00703.
Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23(1):37–45. https://doi.org/10.1016/J.INTIMP.2014.08.002.
Article CAS PubMed Google Scholar
Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980;26(2):171–6. https://doi.org/10.1002/IJC.2910260208.
Article CAS PubMed Google Scholar
Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE. 2010;5(1):e8668. https://doi.org/10.1371/JOURNAL.PONE.0008668.
Article PubMed PubMed Central Google Scholar
Baxter EW, Graham AE, Re NA, Carr IM, Robinson JI, Mackie SL, Morgan AW. Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes. J Immunol Methods. 2020;478:112721. https://doi.org/10.1016/J.JIM.2019.112721.
Article CAS PubMed Google Scholar
Park EK, Jung HS, Yang HI, Yoo MC, Kim C, Kim KS. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res. 2007;56(1):45–50. https://doi.org/10.1007/S00011-007-6115-5.
Article CAS PubMed Google Scholar
Product Information| RIPA Buffer 16488-34 100ML Nacalai Tesque Inc.| e-Nacalai Search Version. (n.d.). Retrieved December 10, 2023, from https://www.e-nacalai.jp/ComDocs/Manual/16488-1-E.pdf.
Bis-Tris Gel Recipes| Corson Lab| IU School of Medicine. (n.d.). Retrieved September 14, 2023, from https://medicine.iu.edu/faculty-labs/corson/protocols/gel-recipes.
Spiller KL, Wrona EA, Romero-Torres S, Pallotta I, Graney PL, Witherel CE, Panicker LM, Feldman RA, Urbanska AM, Santambrogio L, Vunjak-Novakovic G, Freytes DO. Differential gene expression in human, murine, and cell line-derived macrophages upon polarization. Exp Cell Res. 2016;347(1):1–13. https://doi.org/10.1016/J.YEXCR.2015.10.017.
Article CAS PubMed Google Scholar
Tedesco S, Bolego C, Toniolo A, Nassi A, Fadini GP, Locati M, Cignarella A. Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology. 2015;220(5):545–54. https://doi.org/10.1016/J.IMBIO.2014.12.008.
Article CAS PubMed Google Scholar
Mia S, Warnecke A, Zhang XM, Malmström V, Harris RA. An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-β yields a dominant immunosuppressive phenotype. Scand J Immunol. 2014;79(5):305–14. https://doi.org/10.1111/SJI.12162.
Article CAS PubMed PubMed Central Google Scholar
Namgaladze D, Snodgrass RG, Angioni C, Grossmann N, Dehne N, Geisslinger G, Brüne B. AMP-activated protein kinase suppresses arachidonate 15-lipoxygenase expression in interleukin 4-polarized human macrophages. J Biol Chem. 2015;290(40):24484–94. https://doi.org/10.1074/JBC.M115.678243.
Article CAS PubMed PubMed Central Google Scholar
Kohro T, Tanaka T, Murakami T, Wada Y, Aburatani H, Hamakubo T, Kodama T. A comparison of differences in the gene expression profiles of phorbol 12-myristate 13-acetate differentiated THP-1 cells and human monocyte-derived macrophage. J Atheroscler Thromb. 2004;11(2):88–97. https://doi.org/10.5551/JAT.11.88.
Article CAS PubMed Google Scholar
Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND. Transcriptional profiling of the LPS induced NF-κB response in macrophages. BMC Immunol. 2007;8:1–17. https://doi.org/10.1186/1471-2172-8-1.
Article CAS PubMed PubMed Central Google Scholar
Maeß MB, Wittig B, Cignarella A, Lorkowski S. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. J Immunol Methods. 2014;402(1–2):76–81. https://doi.org/10.1016/J.JIM.2013.11.006.
Lund ME, To J, O’Brien BA, Donnelly S. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J Immunol Methods. 2016;430:64–70. https://doi.org/10.1016/J.JIM.2016.01.012.
Article CAS PubMed Google Scholar
Das R, Ganapathy S, Mahabeleshwar GH, Drumm C, Febbraio M, Jain MK, Plow EF. Macrophage gene expression and foam cell formation are regulated by plasminogen. Circulation. 2013;127(11):1209–18. https://doi.org/10.1161/CIRCULATIONAHA.112.001214.
Article CAS PubMed PubMed Central Google Scholar
Bouckenooghe T, Sisino G, Aurientis S, Chinetti-Gbaguidi G, Kerr-Conte J, Staels B, Fontaine P, Storme L, Pattou F, Vambergue A. Adipose tissue macrophages (ATM) of obese patients are releasing increased levels of prolactin during an inflammatory challenge: a role for prolactin in diabesity? Biochem Biophys Acta. 2014;1842(4):584–93. https://doi.org/10.1016/J.BBADIS.2013.12.005.
Article CAS PubMed Google Scholar
Lin Y, Huang M, Wang S, You X, Zhang L, Chen Y. PAQR11 modulates monocyte-to-macrophage differentiation and pathogenesis of rheumatoid arthritis. Immunology. 2021;163(1):60–73. https://doi.org/10.1111/IMM.13303.
Comments (0)