Freed LA, Benjamin EJ, Levy D et al (2002) Mitral valve prolapse in the general population: the benign nature of echocardiographic features in the Framingham heart study. J Am Coll Cardiol 40:1298–1304. https://doi.org/10.1016/s0735-1097(02)02161-7
Delling FN, Vasan RS (2014) Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation 129:2158–2170. https://doi.org/10.1161/CIRCULATIONAHA.113.006702
Article PubMed PubMed Central Google Scholar
Koo HJ, Yang DH, Oh SY et al (2014) Demonstration of mitral valve prolapse with CT for planning of mitral valve repair. Radiographics 34:1537–1552. https://doi.org/10.1148/rg.346130146
Mori S, Fukuzawa K, Takaya T et al (2016) Clinical cardiac structural anatomy reconstructed within the cardiac contour using multidetector-row computed tomography: the arrangement and location of the cardiac valves. Clin Anat 29:364–370. https://doi.org/10.1002/ca.22549
Otto CM, Nishimura RA, Bonow RO et al (2021) 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American college of cardiology/american heart association joint committee on clinical practice guidelines. Circulation 143:e72–e227. https://doi.org/10.1161/CIR.0000000000000923
Kakuta T, Fukushima S, Minami K et al (2023) What is the optimal mitral valve repair for isolated posterior leaflet prolapse to achieve Long-Term durability?? J Am Heart Assoc 12:e028607. https://doi.org/10.1161/JAHA.122.028607
Article PubMed PubMed Central Google Scholar
Blanke P, Dvir D, Cheung A et al (2015) Mitral annular evaluation with CT in the context of transcatheter mitral valve replacement. JACC Cardiovasc Imaging 8:612–615. https://doi.org/10.1016/j.jcmg.2014.07.028
Ranganath P, Moore A, Guerrero M et al (2020) CT for Pre- and postprocedural evaluation of transcatheter mitral valve replacement. Radiographics 40:1528–1553. https://doi.org/10.1148/rg.2020200027
Suh YJ, Lee S, Chang BC et al (2019) Utility of cardiac CT for preoperative evaluation of mitral regurgitation: morphological evaluation of mitral valve and prediction of valve replacement. Korean J Radiol 20:352–363. https://doi.org/10.3348/kjr.2018.0350
Article PubMed PubMed Central Google Scholar
Silva Ferreira MV, Soares CSP, Araujo-Filho J, de AB et al (2024) Mitral annular disease at cardiac MRI: what to know and look for. Radiographics 44:e230156. https://doi.org/10.1148/rg.230156
Adabifirouzjaei F, Hsiao A, DeMaria AN (2022) Mitral valve Prolapse-The role of cardiac imaging modalities. Struct Heart 6:100024. https://doi.org/10.1016/j.shj.2022.100024
Article PubMed PubMed Central Google Scholar
Feuchtner GM, Alkadhi H, Karlo C et al (2010) Cardiac CT angiography for the diagnosis of mitral valve prolapse: comparison with echocardiography1. Radiology 254:374–383. https://doi.org/10.1148/radiol.2541090393
Shah RG, Novaro GM, Blandon RJ et al (2010) Mitral valve prolapse: evaluation with ECG-gated cardiac CT angiography. AJR Am J Roentgenol 194:579–584. https://doi.org/10.2214/AJR.09.2545
Eid M, De Cecco CN, Nance JW et al (2017) Cinematic rendering in CT: A novel, lifelike 3D visualization technique. AJR Am J Roentgenol 209:370–379. https://doi.org/10.2214/AJR.17.17850
Dappa E, Higashigaito K, Fornaro J et al (2016) Cinematic rendering - an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging 7:849–856. https://doi.org/10.1007/s13244-016-0518-1
Article PubMed PubMed Central Google Scholar
Toh H, Mori S, Izawa Y et al (2021) Varied extent of mitral annular Disjunction among cases with different phenotypes of mitral valve prolapse. JACC Case Rep 3:1251–1257. https://doi.org/10.1016/j.jaccas.2021.06.038
Article PubMed PubMed Central Google Scholar
Entrikin DW, Carr JJ (2008) Blood pool inversion volume-rendering technique for visualization of the aortic valve. J Cardiovasc Comput Tomogr 2:366–371. https://doi.org/10.1016/j.jcct.2008.09.004
Renker M, Ramachandra A, Schoepf UJ et al (2011) Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr 5:225–230. https://doi.org/10.1016/j.jcct.2011.05.002
Zhang Y, Tian Y, Kong Y et al (2021) Residual dense network for image restoration. IEEE Trans Pattern Anal Mach Intell 43:2480–2495. https://doi.org/10.1109/TPAMI.2020.2968521
Kobayashi T, Nishii T, Umehara K et al (2023) Deep learning-based noise reduction for coronary CT angiography: using four-dimensional noise-reduction images as the ground truth. Acta Radiol 64:1831–1840. https://doi.org/10.1177/02841851221141656
Nishii T, Kobayashi T, Tanaka H et al (2022) Deep Learning-based post hoc CT denoising for myocardial delayed enhancement. Radiology 305:82–91. https://doi.org/10.1148/radiol.220189
Nishii T, Kobayashi T, Saito T et al (2023) Deep Learning-based post hoc CT denoising for the coronary perivascular fat Attenuation index. Acad Radiol 30:2505–2513. https://doi.org/10.1016/j.acra.2023.01.023
Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the Spatial domain. IEEE Trans Image Process 21:4695–4708. https://doi.org/10.1109/TIP.2012.2214050
Nishii T, Okuyama S, Horinouchi H et al (2021) A Real-World clinical implementation of automated processing using intelligent work aid for rapid reformation at the orbitomeatal line in head computed tomography. Invest Radiol 56:599–604. https://doi.org/10.1097/RLI.0000000000000779
Article CAS PubMed Google Scholar
Japan Network for Research and Information on Medical Exposures: J-RIME (2020) National Diagnostic Reference Levels in Japan
Ghosh N, Al-Shehri H, Chan K et al (2012) Characterization of mitral valve prolapse with cardiac computed tomography: comparison to echocardiographic and intraoperative findings. Int J Cardiovasc Imaging 28:855–863. https://doi.org/10.1007/s10554-011-9888-0
Benz DC, Benetos G, Rampidis G et al (2020) Validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy. J Cardiovasc Comput Tomogr 14:444–451. https://doi.org/10.1016/j.jcct.2020.01.002
Nagayama Y, Emoto T, Kato Y et al (2023) Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography. Eur Radiol 33:8488–8500. https://doi.org/10.1007/s00330-023-09888-3
Douek PC, Boccalini S, Oei EHG et al (2023) Clinical applications of Photon-counting CT: A review of pioneer studies and a glimpse into the future. Radiology 309:e222432. https://doi.org/10.1148/radiol.222432
Flohr T, Schmidt B (2023) Technical basics and clinical benefits of Photon-Counting CT. Invest Radiol 58:441–450. https://doi.org/10.1097/RLI.0000000000000980
Article CAS PubMed PubMed Central Google Scholar
Yu Y, Wu D, Lan Z et al (2024) Deep learning model for low-dose CT late iodine enhancement imaging and extracellular volume quantification. Eur Radiol. https://doi.org/10.1007/s00330-024-11288-0
Comments (0)