Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and Atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev. 2012;58(1):44–50.
Article CAS PubMed Google Scholar
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev. 2023;103(4):2623–77.
Article CAS PubMed PubMed Central Google Scholar
El-Hayek S, Clarke HJ. Control of oocyte growth and development by intercellular communication within the follicular niche. Results Probl Cell Differ. 2016;58:191–224.
Article CAS PubMed Google Scholar
Eppig JJ, Reproduction. Oocytes call, granulosa cells connect. Curr Biol. 2018;28(8):R354–6.
Zhang H, Risal S, Gorre N, et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol. 2014;24(21):2501–8.
Article CAS PubMed Google Scholar
Sánchez F, Smitz J. Molecular control of oogenesiss. Biochim Biophys Acta. 2012;1822(12):1896–912.
Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79:237–60.
Article CAS PubMed Google Scholar
Fan HY, Liu Z, Shimada M, et al. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 2009;324(5929):938–41.
Article CAS PubMed PubMed Central Google Scholar
Wang X, Liao J, Shi H, et al. Granulosa Cell-Layer stiffening prevents escape of mural granulosa cells from the Post-Ovulatory follicle. Adv Sci (Weinh). Jul 2024;1:e2403640.
Akison LK, Alvino ER, Dunning KR, Robker RL, Russell DL. Transient invasive migration in mouse cumulus oocyte complexes induced at ovulation by luteinizing hormone. Biol Reprod. 2012;86(4):125.
Alam MH, Miyano T. Interaction between growing oocytes and granulosa cells in vitro. Reprod Med Biol. 2019;19(1):13–23.
Article PubMed PubMed Central Google Scholar
Zhao P, Qiao J, Huang S, et al. Gonadotrophin-induced paracrine regulation of human oocyte maturation by BDNF and GDNF secreted by granulosa cells. Hum Reprod. 2011;26(3):695–702.
Article CAS PubMed Google Scholar
Kumariya S, Ubba V, Jha RK, Gayen JR. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective. Autophagy. 2021;17(10):2706–33.
Article CAS PubMed PubMed Central Google Scholar
Xiao S, Du J, Yuan G, Luo X, Song L. Granulosa cells-related microRNAs in ovarian diseases: mechanism, facts and perspectives. Reprod Sci. 2024;31(12):3635–3650.
Cao LY, Zhang ZQ, Liu PP, et al. Aberrant BMP15/HIF-1α/SCF signaling pathway in human granulosa cells is involved in the PCOS related abnormal follicular development. Gynecol Endocrinol. 2022;38(11):971–7.
Article CAS PubMed Google Scholar
Cai L, Zong DK, Tong GQ, Li L. Apoptotic mechanism of premature ovarian failure and rescue effect of traditional Chinese medicine: a review. J Tradit Chin Med. 2021;41(3):492–8.
Conca Dioguardi C, Uslu B, Haynes M, et al. Granulosa cell and oocyte mitochondrial abnormalities in a mouse model of fragile X primary ovarian insufficiency. Mol Hum Reprod. 2016;22(6):384–96.
Article PubMed PubMed Central Google Scholar
Fan Y, Chang Y, Wei L, et al. Apoptosis of mural granulosa cells is increased in women with diminished ovarian reserve. J Assist Reprod Genet. 2019;36(6):1225–35.
Article PubMed PubMed Central Google Scholar
Dayal S, Chaubey D, Joshi DC, Ranmale S, Pillai B. Noncoding RNAs: emerging regulators of behavioral complexity. Wiley Interdiscip Rev RNA. 2024;15(3):e1847.
Article CAS PubMed Google Scholar
Pankiewicz K, Laudański P, Issat T. The role of noncoding RNA in the pathophysiology and treatment of premature ovarian insufficiency. Int J Mol Sci. 2021;22(17):9336.
Article CAS PubMed PubMed Central Google Scholar
Tu J, Cheung AH, Chan CL, Chan WY. The role of microRNAs in ovarian granulosa cells in health and disease. Front Endocrinol (Lausanne). 2019;10:174.
Luo J, Sun Z. MicroRNAs in POI, DOR and POR. Arch Gynecol Obstet. 2023;308(5):1419–30.
Article CAS PubMed Google Scholar
Lv Z, Lv Z, Song L, Zhang Q, Zhu S. Role of lncRNAs in the pathogenic mechanism of human decreased ovarian reserve. Front Genet. 2023;14:1056061.
Article CAS PubMed PubMed Central Google Scholar
Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18.
Article CAS PubMed Google Scholar
Martirosyan A, De Martino A, Pagnani A, Marinari E. CeRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins. Sci Rep. 2017;7:43673.
Article PubMed PubMed Central Google Scholar
Fabbri M, Girnita L, Varani G, Calin GA. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 2019;29(9):1377–88.
Article CAS PubMed PubMed Central Google Scholar
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3):211–32.
Article CAS PubMed Google Scholar
Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(1):R17–29.
Article CAS PubMed Google Scholar
Stoll L, Rodríguez-Trejo A, Guay C, et al. A circular RNA generated from an intron of the insulin gene controls insulin secretion. Nat Commun. 2020;11(1):5611.
Article CAS PubMed PubMed Central Google Scholar
Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their integrated networks. J Integr Bioinform. 2019;16(3):20190027.
Article PubMed PubMed Central Google Scholar
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to Forge new ones. Cell. 2014;157(1):77–94.
Article CAS PubMed Google Scholar
Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803(11):1231–43.
Article CAS PubMed Google Scholar
Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.
Article CAS PubMed Google Scholar
Pillai RS, Artus CG, Filipowicz W. Tethering of human ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA. 2004;10(10):1518–25.
Comments (0)