The Role of Ovarian Granulosa Cells Related-ncRNAs in Ovarian Dysfunctions: Mechanism Research and Clinical Exploration

Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and Atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev. 2012;58(1):44–50.

Article  CAS  PubMed  Google Scholar 

Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev. 2023;103(4):2623–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Hayek S, Clarke HJ. Control of oocyte growth and development by intercellular communication within the follicular niche. Results Probl Cell Differ. 2016;58:191–224.

Article  CAS  PubMed  Google Scholar 

Eppig JJ, Reproduction. Oocytes call, granulosa cells connect. Curr Biol. 2018;28(8):R354–6.

Zhang H, Risal S, Gorre N, et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol. 2014;24(21):2501–8.

Article  CAS  PubMed  Google Scholar 

Sánchez F, Smitz J. Molecular control of oogenesiss. Biochim Biophys Acta. 2012;1822(12):1896–912.

Article  PubMed  Google Scholar 

Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79:237–60.

Article  CAS  PubMed  Google Scholar 

Fan HY, Liu Z, Shimada M, et al. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 2009;324(5929):938–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Liao J, Shi H, et al. Granulosa Cell-Layer stiffening prevents escape of mural granulosa cells from the Post-Ovulatory follicle. Adv Sci (Weinh). Jul 2024;1:e2403640.

Article  Google Scholar 

Akison LK, Alvino ER, Dunning KR, Robker RL, Russell DL. Transient invasive migration in mouse cumulus oocyte complexes induced at ovulation by luteinizing hormone. Biol Reprod. 2012;86(4):125.

Article  PubMed  Google Scholar 

Alam MH, Miyano T. Interaction between growing oocytes and granulosa cells in vitro. Reprod Med Biol. 2019;19(1):13–23.

Article  PubMed  PubMed Central  Google Scholar 

Zhao P, Qiao J, Huang S, et al. Gonadotrophin-induced paracrine regulation of human oocyte maturation by BDNF and GDNF secreted by granulosa cells. Hum Reprod. 2011;26(3):695–702.

Article  CAS  PubMed  Google Scholar 

Kumariya S, Ubba V, Jha RK, Gayen JR. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective. Autophagy. 2021;17(10):2706–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao S, Du J, Yuan G, Luo X, Song L. Granulosa cells-related microRNAs in ovarian diseases: mechanism, facts and perspectives. Reprod Sci. 2024;31(12):3635–3650.

Cao LY, Zhang ZQ, Liu PP, et al. Aberrant BMP15/HIF-1α/SCF signaling pathway in human granulosa cells is involved in the PCOS related abnormal follicular development. Gynecol Endocrinol. 2022;38(11):971–7.

Article  CAS  PubMed  Google Scholar 

Cai L, Zong DK, Tong GQ, Li L. Apoptotic mechanism of premature ovarian failure and rescue effect of traditional Chinese medicine: a review. J Tradit Chin Med. 2021;41(3):492–8.

PubMed  Google Scholar 

Conca Dioguardi C, Uslu B, Haynes M, et al. Granulosa cell and oocyte mitochondrial abnormalities in a mouse model of fragile X primary ovarian insufficiency. Mol Hum Reprod. 2016;22(6):384–96.

Article  PubMed  PubMed Central  Google Scholar 

Fan Y, Chang Y, Wei L, et al. Apoptosis of mural granulosa cells is increased in women with diminished ovarian reserve. J Assist Reprod Genet. 2019;36(6):1225–35.

Article  PubMed  PubMed Central  Google Scholar 

Dayal S, Chaubey D, Joshi DC, Ranmale S, Pillai B. Noncoding RNAs: emerging regulators of behavioral complexity. Wiley Interdiscip Rev RNA. 2024;15(3):e1847.

Article  CAS  PubMed  Google Scholar 

Pankiewicz K, Laudański P, Issat T. The role of noncoding RNA in the pathophysiology and treatment of premature ovarian insufficiency. Int J Mol Sci. 2021;22(17):9336.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu J, Cheung AH, Chan CL, Chan WY. The role of microRNAs in ovarian granulosa cells in health and disease. Front Endocrinol (Lausanne). 2019;10:174.

Article  PubMed  Google Scholar 

Luo J, Sun Z. MicroRNAs in POI, DOR and POR. Arch Gynecol Obstet. 2023;308(5):1419–30.

Article  CAS  PubMed  Google Scholar 

Lv Z, Lv Z, Song L, Zhang Q, Zhu S. Role of lncRNAs in the pathogenic mechanism of human decreased ovarian reserve. Front Genet. 2023;14:1056061.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18.

Article  CAS  PubMed  Google Scholar 

Martirosyan A, De Martino A, Pagnani A, Marinari E. CeRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins. Sci Rep. 2017;7:43673.

Article  PubMed  PubMed Central  Google Scholar 

Fabbri M, Girnita L, Varani G, Calin GA. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 2019;29(9):1377–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3):211–32.

Article  CAS  PubMed  Google Scholar 

Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(1):R17–29.

Article  CAS  PubMed  Google Scholar 

Stoll L, Rodríguez-Trejo A, Guay C, et al. A circular RNA generated from an intron of the insulin gene controls insulin secretion. Nat Commun. 2020;11(1):5611.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their integrated networks. J Integr Bioinform. 2019;16(3):20190027.

Article  PubMed  PubMed Central  Google Scholar 

Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to Forge new ones. Cell. 2014;157(1):77–94.

Article  CAS  PubMed  Google Scholar 

Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803(11):1231–43.

Article  CAS  PubMed  Google Scholar 

Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.

Article  CAS  PubMed  Google Scholar 

Pillai RS, Artus CG, Filipowicz W. Tethering of human ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA. 2004;10(10):1518–25.

Article 

Comments (0)

No login
gif