Steinmetz JD, Culbreth GT, Haile LM, Rafferty Q, Lo J, Fukutaki KG, et al. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5(9):e508–22.
Sukerkar PA, Doyle Z. Imaging of osteoarthritis of the knee. Radiol Clin North Am. 2022;60(4):605–16.
Antony B, Singh A. Imaging and biochemical markers for osteoarthritis. Diagnostics (Basel). 2021;11(7):1205
Peterfy CG, Guermazi A, Zaim S, Tirman PFJ, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.
Hunter DJ, Guermazi A, Lo GH, Grainger AJ, Conaghan PG, Boudreau RM, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthr Cartil. 2011;19(8):990–1002.
Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston–Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206–11.
Article CAS PubMed Google Scholar
Roemer FW, Jarraya M, Hayashi D, Crema MD, Haugen IK, Hunter DJ, et al. A perspective on the evolution of semi-quantitative MRI assessment of osteoarthritis: past, present and future. Osteoarthr Cartil. 2024;32(4):460-472.
Eckstein F, Wluka AE, Wirth W, Cicuttini F. 30 Years of MRI-based cartilage & bone morphometry in knee osteoarthritis: from correlation to clinical trials. Osteoarthr Cartil. 2024;32(4):439–51.
Cui T, Liu R, Jing Y, Fu J, Chen J. Development of machine learning models aiming at knee osteoarthritis diagnosing: an MRI radiomics analysis. J Orthop Surg Res. 2023;18(1):375.
Article PubMed PubMed Central Google Scholar
Zhao Z, Zhao M, Yang T, Li J, Qin C, Wang B, et al. Identifying significant structural factors associated with knee pain severity in patients with osteoarthritis using machine learning. Sci Rep. 2024;14(1):14705.
Article CAS PubMed PubMed Central Google Scholar
Kijowski R, Fritz J, Deniz CM. Deep learning applications in osteoarthritis imaging. Skeletal Radiol. 2023;52(11):2225–38.
Article PubMed PubMed Central Google Scholar
Calivà F, Namiri NK, Dubreuil M, Pedoia V, Ozhinsky E, Majumdar S. Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nat Rev Rheumatol. 2022;18(2):112–21.
Felfeliyan B, Wichuk S, Hareendranathan AR, Lambert RG, Maksymowych WP, Jaremko J. OMERACT validation of a deep learning algorithm for automated absolute quantification of knee joint effusion versus manual semi-quantitative assessment. Semin Arthritis Rheum. 2024;66: 152420.
Antoniou T, Mamdani M. Evaluation of machine learning solutions in medicine. Can Med Assoc J. 2021;193(36):E1425–9.
Eriksen MB, Frandsen TF. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: a systematic review. J Med Libr Assoc. 2018;106(4). https://doi.org/10.5195/jmla.2018.345
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, The PRISMA, et al. statement: an updated guideline for reporting systematic reviews. BMJ. 2020;2021:n71.
McGuire D, Bowes M, Brett A, Segal NA, Miller M, Rosen D et al. Study TPX-100–5: intra-articular TPX-100 significantly delays pathological bone shape change and stabilizes cartilage in moderate to severe bilateral knee OA. Arthritis Res Ther. 2021;23(1). https://doi.org/10.1186/s13075-021-02622-8.
Hirvasniemi J, Klein S, Bierma-Zeinstra S, Vernooij MW, Schiphof D, Oei EHG. A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone. Eur Radiol. 2021;31(11):8513–21.
Article PubMed PubMed Central Google Scholar
Raman S, Gold GE, Rosen MS, Sveinsson B. Automatic estimation of knee effusion from limited MRI data. Sci Rep. 2022;12(1):3155.
Ye Q, He D, Ding X, Wang Y, Wei Y, Liu J. Quantitative evaluation of the infrapatellar fat pad in knee osteoarthritis: MRI-based radiomic signature. BMC Musculoskelet Disord. 2023;24(1):326.
Burke CJ, Alizai H, Beltran LS, Regatte RR. MRI of synovitis and joint fluid. J Magn Reson Imaging. 2019;49(6):1512–27.
Article PubMed PubMed Central Google Scholar
Felfeliyan B. Automatic quantification of osteoarthritis features in MRI using deep learning methods (Doctoral thesis, University of Calgary, Calgary, Canada). 2023. https://doi.org/10.11575/PRISM/40802.
Østergaard M, Peterfy CG, Bird P, Gandjbakhch F, Glinatsi D, Eshed I, et al. The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system: updated recommendations by the OMERACT MRI in arthritis working group. J Rheumatol. 2017;44(11):1706–12.
Jaremko JL, McDougall D, Smith B, Lambert RG, Maksymowych WP. Clinical significance of a knee effusion detected on MRI by moaks or kimriss in a patient with knee OA. Osteoarthr Cartil. 2015;23:A243–4.
Jaremko JL, Felfeliyan B, Hareendranathan A, Thejeel B, Vanessa Q-L, Østergaard M, et al. Volumetric quantitative measurement of hip effusions by manual versus automated artificial intelligence techniques: an OMERACT preliminary validation study. Semin Arthritis Rheum. 2021;51(3):623–6.
Everhart JS, Abouljoud MM, Kirven JC, Flanigan DC. Full-thickness cartilage defects are important independent predictive factors for progression to total knee arthroplasty in older adults with minimal to moderate osteoarthritis: data from the osteoarthritis initiative. JBJS. 2019;101(1):56–63.
Lee S, Nardo L, Kumar D, Wyatt CR, Souza RB, Lynch J, et al. Scoring hip osteoarthritis with MRI (SHOMRI): a whole joint osteoarthritis evaluation system. J Magn Reson Imaging. 2015;41(6):1549–57.
Cummings J, Gao K, Chen V, Morales Martinez A, Iriondo C, Caliva F, et al. The knee connectome: a novel tool for studying spatiotemporal change in cartilage thickness. J Orthop Res. 2023;42(1):43–53.
Article PubMed PubMed Central Google Scholar
Namiri NK, Càliva F, Martinez AM, Pedoia V, Lansdown DA. A more posterior tibial tubercle (decreased sagittal tibial tubercle–trochlear groove distance) is significantly associated with patellofemoral joint degenerative cartilage change: a deep learning analysis. Arthroscopy. 2023;39(6):1493–501.e2.
Schmidt AM, Desai AD, Watkins LE, Crowder HA, Black MS, Mazzoli V, et al. Generalizability of deep learning segmentation algorithms for automated assessment of cartilage morphology and MRI relaxometry. J Magn Reson Imaging. 2023;57(4):1029–39.
Sekiya I, Katano H, Guermazi A, Miura Y, Okanouchi N, Tomita M, et al. Association of AI-determined Kellgren-Lawrence grade with medial meniscus extrusion and cartilage thickness by AI-based 3D MRI analysis in early knee osteoarthritis. Sci Rep. 2023;13(1):20093.
Article CAS PubMed PubMed Central Google Scholar
Sun C, Gao H, Wu S, Lu Q, Wang Y, Cai X. Evaluation of the consistency of the MRI- based AI segmentation cartilage model using the natural tibial plateau cartilage. J Orthop Surg Res. 2024;19(1):247.
Article PubMed PubMed Central Google Scholar
Jaremko JL, Azmat O, Lambert RG, Bird P, Haugen IK, Jans L, et al. Validation of a knowledge transfer tool for the knee inflammation MRI scoring system for bone marrow lesions according to the OMERACT filter: data from the osteoarthritis initiative. J Rheumatol. 2017;44(11):1718–22.
Aso K, Shahtaheri SM, McWilliams DF, Walsh DA. Association of subchondral bone marrow lesion localization with weight-bearing pain in people with knee osteoarthritis: data from the Osteoarthritis Initiative. Arthritis Res Ther. 2021;23(1). https://doi.org/10.1186/s13075-021-02422-0
Conaghan PG, Ostergaard M, Bowes MA, Wu C, Fuerst T, van der Heijde D, et al. Comparing the effects of tofacitinib, methotrexate and the combination, on bone marrow oedema, synovitis and bone erosion in methotrexate-naive, early active rheumatoid arthritis: results of an exploratory randomised MRI study incorporating semiquantitati. Ann Rheum Dis. 2016;75(6):1024–33.
Article CAS PubMed Google Scholar
Mohajer B, Guermazi A, Conaghan PG, Berenbaum F, Roemer FW, Haj-Mirzaian A, et al. Statin use and MRI subchondral bone marrow lesion worsening in generalized osteoarthritis: longitudinal analysis from Osteoarthritis Initiative data. Eur Radiol. 2022;32(6):3944–53.
Article CAS PubMed PubMed Central Google Scholar
Zheng M, Miao S, Chen D, Yao F, Xiao Q, Zhu G, et al. Can radiomics replace the SPARCC scoring system in evaluating bone marrow edema of sacroiliac joints in patients with axial spondyloarthritis? Clin Rheumatol. 2023;42(6):1675–82.
Yiu C, Griffith JF, Xiao F, Shi L, Zhou B, Wu S, et al. Automated quantification of wrist bone marrow oedema, pre- and post-treatment, in early rheumatoid arthritis. Rheumatol Adv Pract. 2024;8(3):rkae073.
Maksymowych WP, Jaremko JL, Pedersen SJ, Eshed I, Weber U, McReynolds A, et al. Comparative validation of the knee inflammation MRI scoring system and the MRI osteoarthritis knee score for semi-quantitative assessment of bone marrow lesions and synovitis-effusion in osteoarthritis: an international multi-reader exercise. Ther Adv Musculoskelet Dis. 2023;15:15.
Kampylafka E, D’Oliveira I, Linz C, Lerchen V, Stemmler F, Simon D, et al. Resolution of synovitis and arrest of catabolic and anabolic bone changes in patients with psoriatic arthritis by IL-17A blockade with secukinumab: results from the prospective PSARTROS study. Arthritis Res Ther. 2018;20(1):1–10. https://doi.org/10.1186/s13075-018-1653-5.
Comments (0)