An, S., Shi, J., Huang, J., Li, Z., Feng, M., & Cao, G. (2024). HIF-1alpha induced by hypoxia promotes peripheral nerve injury recovery through regulating ferroptosis in DRG neuron. Molecular Neurobiology, 61, 6300–6311. https://doi.org/10.1007/s12035-024-03964-5
Article PubMed CAS Google Scholar
Avila, M. A., Berasain, C., Prieto, J., Mato, J. M., Garcia-Trevijano, E. R., & Corrales, F. J. (2005). Influence of impaired liver methionine metabolism on the development of vascular disease and inflammation. Current Medicinal Chemistry Cardiovascular and Hematological Agents, 3, 267–281. https://doi.org/10.2174/1568016054368197
Article PubMed CAS Google Scholar
Bolandghamat, S., & Behnam-Rassouli, M. (2020). Recent findings on the effects of pharmacological agents on the nerve regeneration after peripheral nerve injury. Current Neuropharmacology, 18, 1154–1163. https://doi.org/10.2174/1570159X18666200507084024
Article PubMed PubMed Central CAS Google Scholar
Brown, E. E., Blauwendraat, C., Trinh, J., Rizig, M., Nalls, M. A., Leveille, E., Ruskey, J. A., Jonvik, H., Tan, M. M. X., Bandres-Ciga, S., Hassin-Baer, S., Brockmann, K., Infante, J., Tolosa, E., Ezquerra, M., Ben Romdhan, S., Benmahdjoub, M., Arezki, M., Mhiri, C., … International Parkinson Disease Genomics Consortium. (2021). Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson’s disease. Neurobiology of Aging, 97(148), e117-e148.e124. https://doi.org/10.1016/j.neurobiolaging.2020.07.002
Cao, R., Xie, J., & Zhang, L. (2022). Abnormal methylation caused by folic acid deficiency in neural tube defects. Open Life Sciences, 17, 1679–1688. https://doi.org/10.1515/biol-2022-0504
Article PubMed PubMed Central CAS Google Scholar
Chen, Y., Wang, Z., Xie, Y., Guo, X., Tang, X., Wang, S., Yang, S., Chen, K., Niu, Y., & Ji, W. (2012). Folic acid deficiency inhibits neural rosette formation and neuronal differentiation from rhesus monkey embryonic stem cells. Journal of Neuroscience Research, 90, 1382–1391. https://doi.org/10.1002/jnr.23030
Article PubMed CAS Google Scholar
Clare, C. E., Brassington, A. H., Kwong, W. Y., & Sinclair, K. D. (2019). One-carbon metabolism: Linking nutritional biochemistry to epigenetic programming of long-term development. Annual Review of Animal Biosciences, 7, 263–287. https://doi.org/10.1146/annurev-animal-020518-115206
Article PubMed CAS Google Scholar
El Soury, M., Fornasari, B. E., Carta, G., Zen, F., Haastert-Talini, K., & Ronchi, G. (2021). The role of dietary nutrients in peripheral nerve regeneration. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22147417
Article PubMed PubMed Central Google Scholar
Fa, J. (2021). Dynamin 3 overexpression suppresses the proliferation, migration and invasion of cervical cancer cells. Oncology Letters, 22, 524. https://doi.org/10.3892/ol.2021.12785
Article PubMed PubMed Central CAS Google Scholar
Fayard, E., Xue, G., Parcellier, A., Bozulic, L., & Hemmings, B. A. (2010). Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Current Topics in Microbiology and Immunology, 346, 31–56. https://doi.org/10.1007/82_2010_58
Article PubMed CAS Google Scholar
Finnell, R. H., Spiegelstein, O., Wlodarczyk, B., Triplett, A., Pogribny, I. P., Melnyk, S., & James, J. S. (2002). DNA methylation in Folbp1 knockout mice supplemented with folic acid during gestation. Journal of Nutrition, 132, 2457S-2461S. https://doi.org/10.1093/jn/132.8.2457S
Article PubMed CAS Google Scholar
Huang, N., Li, S., Xie, Y., Han, Q., Xu, X. M., & Sheng, Z. H. (2021). Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Current Biology, 31, 3098-3114.e3097. https://doi.org/10.1016/j.cub.2021.04.079
Article PubMed CAS Google Scholar
Huang, Y., Ye, K., He, A., Wan, S., Wu, M., Hu, D., Xu, K., Wei, P., & Yin, J. (2024). Dual-layer conduit containing VEGF-A—Transfected Schwann cells promotes peripheral nerve regeneration via angiogenesis. Acta Biomaterialia, 180, 323–336. https://doi.org/10.1016/j.actbio.2024.03.029
Article PubMed CAS Google Scholar
Hussain, G., Wang, J., Rasul, A., Anwar, H., Qasim, M., Zafar, S., Aziz, N., Razzaq, A., Hussain, R., de Aguilar, J. G., & Sun, T. (2020). Current status of therapeutic approaches against peripheral nerve injuries: A detailed story from injury to recovery. International Journal of Biological Sciences, 16, 116–134. https://doi.org/10.7150/ijbs.35653
Article PubMed PubMed Central CAS Google Scholar
Iskandar, B. J., Nelson, A., Resnick, D., Skene, J. H., Gao, P., Johnson, C., Cook, T. D., & Hariharan, N. (2004). Folic acid supplementation enhances repair of the adult central nervous system. Annals of Neurology, 56, 221–227. https://doi.org/10.1002/ana.20174
Article PubMed CAS Google Scholar
Kang, W. B., Chen, Y. J., Lu, D. Y., & Yan, J. Z. (2019). Folic acid contributes to peripheral nerve injury repair by promoting Schwann cell proliferation, migration, and secretion of nerve growth factor. Neural Regeneration Research, 14, 132–139. https://doi.org/10.4103/1673-5374.243718
Article PubMed PubMed Central CAS Google Scholar
Liu, J., Song, X., Yan, Y., & Liu, B. (2021). Role of GTPase-dependent mitochondrial dynamins in heart diseases. Frontiers in Cardiovascular Medicine, 8, 720085. https://doi.org/10.3389/fcvm.2021.720085
Article PubMed PubMed Central CAS Google Scholar
Lopes, B., Sousa, P., Alvites, R., Branquinho, M., Sousa, A. C., Mendonca, C., Atayde, L. M., Luis, A. L., Varejao, A. S. P., & Mauricio, A. C. (2022). Peripheral nerve injury treatments and advances: One health perspective. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23020918
Article PubMed PubMed Central Google Scholar
Ma, Y., Guan, L., Han, Y., Zhou, Y., Li, X., Liu, Y., Zhang, X., Zhang, W., Li, X., Wang, S., & Lu, W. (2019). siPRDX2-elevated DNM3 inhibits the proliferation and metastasis of colon cancer cells via AKT signaling pathway. Cancer Management and Research, 11, 5799–5811. https://doi.org/10.2147/CMAR.S193805
Article PubMed PubMed Central CAS Google Scholar
Menezo, Y., Elder, K., Clement, A., & Clement, P. (2022). Folic acid, folinic acid, 5 methyl tetrahydrofolate supplementation for mutations that affect epigenesis through the folate and one-carbon cycles. Biomolecules. https://doi.org/10.3390/biom12020197
Article PubMed PubMed Central Google Scholar
Mentch, S. J., & Locasale, J. W. (2016). One-carbon metabolism and epigenetics: Understanding the specificity. Annals of the New York Academy of Sciences, 1363, 91–98. https://doi.org/10.1111/nyas.12956
Article PubMed CAS Google Scholar
Piedrahita, J. A., Oetama, B., Bennett, G. D., van Waes, J., Kamen, B. A., Richardson, J., Lacey, S. W., Anderson, R. G., & Finnell, R. H. (1999). Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nature Genetics, 23, 228–232. https://doi.org/10.1038/13861
Article PubMed CAS Google Scholar
Portela, A., & Esteller, M. (2010). Epigenetic modifications and human disease. Nature Biotechnology, 28, 1057–1068. https://doi.org/10.1038/nbt.1685
Article PubMed CAS Google Scholar
Poulose, S. M., Miller, M. G., Scott, T., & Shukitt-Hale, B. (2017). Nutritional factors affecting adult neurogenesis and cognitive function. Advances in Nutrition, 8, 804–811. https://doi.org/10.3945/an.117.016261
Article PubMed PubMed Central CAS Google Scholar
Reynolds, E. H. (2002). Benefits and risks of folic acid to the nervous system. Journal of Neurology, Neurosurgery and Psychiatry, 72, 567–571. https://doi.org/10.1136/jnnp.72.5.567
Article PubMed PubMed Central CAS Google Scholar
Reynolds, E. H. (2006). Vitamin B12, folic acid, and the nervous system. Lancet Neurology, 5, 949–960. https://doi.org/10.1016/S1474-4422(06)70598-1
Comments (0)