Folic Acid Promotes Peripheral Nerve Injury Repair via Regulating DNM3-AKT Pathway Through Mediating Methionine Cycle Metabolism

An, S., Shi, J., Huang, J., Li, Z., Feng, M., & Cao, G. (2024). HIF-1alpha induced by hypoxia promotes peripheral nerve injury recovery through regulating ferroptosis in DRG neuron. Molecular Neurobiology, 61, 6300–6311. https://doi.org/10.1007/s12035-024-03964-5

Article  PubMed  CAS  Google Scholar 

Avila, M. A., Berasain, C., Prieto, J., Mato, J. M., Garcia-Trevijano, E. R., & Corrales, F. J. (2005). Influence of impaired liver methionine metabolism on the development of vascular disease and inflammation. Current Medicinal Chemistry Cardiovascular and Hematological Agents, 3, 267–281. https://doi.org/10.2174/1568016054368197

Article  PubMed  CAS  Google Scholar 

Bolandghamat, S., & Behnam-Rassouli, M. (2020). Recent findings on the effects of pharmacological agents on the nerve regeneration after peripheral nerve injury. Current Neuropharmacology, 18, 1154–1163. https://doi.org/10.2174/1570159X18666200507084024

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brown, E. E., Blauwendraat, C., Trinh, J., Rizig, M., Nalls, M. A., Leveille, E., Ruskey, J. A., Jonvik, H., Tan, M. M. X., Bandres-Ciga, S., Hassin-Baer, S., Brockmann, K., Infante, J., Tolosa, E., Ezquerra, M., Ben Romdhan, S., Benmahdjoub, M., Arezki, M., Mhiri, C., … International Parkinson Disease Genomics Consortium. (2021). Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson’s disease. Neurobiology of Aging, 97(148), e117-e148.e124. https://doi.org/10.1016/j.neurobiolaging.2020.07.002

Article  CAS  Google Scholar 

Cao, R., Xie, J., & Zhang, L. (2022). Abnormal methylation caused by folic acid deficiency in neural tube defects. Open Life Sciences, 17, 1679–1688. https://doi.org/10.1515/biol-2022-0504

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen, Y., Wang, Z., Xie, Y., Guo, X., Tang, X., Wang, S., Yang, S., Chen, K., Niu, Y., & Ji, W. (2012). Folic acid deficiency inhibits neural rosette formation and neuronal differentiation from rhesus monkey embryonic stem cells. Journal of Neuroscience Research, 90, 1382–1391. https://doi.org/10.1002/jnr.23030

Article  PubMed  CAS  Google Scholar 

Clare, C. E., Brassington, A. H., Kwong, W. Y., & Sinclair, K. D. (2019). One-carbon metabolism: Linking nutritional biochemistry to epigenetic programming of long-term development. Annual Review of Animal Biosciences, 7, 263–287. https://doi.org/10.1146/annurev-animal-020518-115206

Article  PubMed  CAS  Google Scholar 

El Soury, M., Fornasari, B. E., Carta, G., Zen, F., Haastert-Talini, K., & Ronchi, G. (2021). The role of dietary nutrients in peripheral nerve regeneration. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22147417

Article  PubMed  PubMed Central  Google Scholar 

Fa, J. (2021). Dynamin 3 overexpression suppresses the proliferation, migration and invasion of cervical cancer cells. Oncology Letters, 22, 524. https://doi.org/10.3892/ol.2021.12785

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fayard, E., Xue, G., Parcellier, A., Bozulic, L., & Hemmings, B. A. (2010). Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Current Topics in Microbiology and Immunology, 346, 31–56. https://doi.org/10.1007/82_2010_58

Article  PubMed  CAS  Google Scholar 

Finnell, R. H., Spiegelstein, O., Wlodarczyk, B., Triplett, A., Pogribny, I. P., Melnyk, S., & James, J. S. (2002). DNA methylation in Folbp1 knockout mice supplemented with folic acid during gestation. Journal of Nutrition, 132, 2457S-2461S. https://doi.org/10.1093/jn/132.8.2457S

Article  PubMed  CAS  Google Scholar 

Huang, N., Li, S., Xie, Y., Han, Q., Xu, X. M., & Sheng, Z. H. (2021). Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Current Biology, 31, 3098-3114.e3097. https://doi.org/10.1016/j.cub.2021.04.079

Article  PubMed  CAS  Google Scholar 

Huang, Y., Ye, K., He, A., Wan, S., Wu, M., Hu, D., Xu, K., Wei, P., & Yin, J. (2024). Dual-layer conduit containing VEGF-A—Transfected Schwann cells promotes peripheral nerve regeneration via angiogenesis. Acta Biomaterialia, 180, 323–336. https://doi.org/10.1016/j.actbio.2024.03.029

Article  PubMed  CAS  Google Scholar 

Hussain, G., Wang, J., Rasul, A., Anwar, H., Qasim, M., Zafar, S., Aziz, N., Razzaq, A., Hussain, R., de Aguilar, J. G., & Sun, T. (2020). Current status of therapeutic approaches against peripheral nerve injuries: A detailed story from injury to recovery. International Journal of Biological Sciences, 16, 116–134. https://doi.org/10.7150/ijbs.35653

Article  PubMed  PubMed Central  CAS  Google Scholar 

Iskandar, B. J., Nelson, A., Resnick, D., Skene, J. H., Gao, P., Johnson, C., Cook, T. D., & Hariharan, N. (2004). Folic acid supplementation enhances repair of the adult central nervous system. Annals of Neurology, 56, 221–227. https://doi.org/10.1002/ana.20174

Article  PubMed  CAS  Google Scholar 

Kang, W. B., Chen, Y. J., Lu, D. Y., & Yan, J. Z. (2019). Folic acid contributes to peripheral nerve injury repair by promoting Schwann cell proliferation, migration, and secretion of nerve growth factor. Neural Regeneration Research, 14, 132–139. https://doi.org/10.4103/1673-5374.243718

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu, J., Song, X., Yan, Y., & Liu, B. (2021). Role of GTPase-dependent mitochondrial dynamins in heart diseases. Frontiers in Cardiovascular Medicine, 8, 720085. https://doi.org/10.3389/fcvm.2021.720085

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lopes, B., Sousa, P., Alvites, R., Branquinho, M., Sousa, A. C., Mendonca, C., Atayde, L. M., Luis, A. L., Varejao, A. S. P., & Mauricio, A. C. (2022). Peripheral nerve injury treatments and advances: One health perspective. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23020918

Article  PubMed  PubMed Central  Google Scholar 

Ma, Y., Guan, L., Han, Y., Zhou, Y., Li, X., Liu, Y., Zhang, X., Zhang, W., Li, X., Wang, S., & Lu, W. (2019). siPRDX2-elevated DNM3 inhibits the proliferation and metastasis of colon cancer cells via AKT signaling pathway. Cancer Management and Research, 11, 5799–5811. https://doi.org/10.2147/CMAR.S193805

Article  PubMed  PubMed Central  CAS  Google Scholar 

Menezo, Y., Elder, K., Clement, A., & Clement, P. (2022). Folic acid, folinic acid, 5 methyl tetrahydrofolate supplementation for mutations that affect epigenesis through the folate and one-carbon cycles. Biomolecules. https://doi.org/10.3390/biom12020197

Article  PubMed  PubMed Central  Google Scholar 

Mentch, S. J., & Locasale, J. W. (2016). One-carbon metabolism and epigenetics: Understanding the specificity. Annals of the New York Academy of Sciences, 1363, 91–98. https://doi.org/10.1111/nyas.12956

Article  PubMed  CAS  Google Scholar 

Piedrahita, J. A., Oetama, B., Bennett, G. D., van Waes, J., Kamen, B. A., Richardson, J., Lacey, S. W., Anderson, R. G., & Finnell, R. H. (1999). Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nature Genetics, 23, 228–232. https://doi.org/10.1038/13861

Article  PubMed  CAS  Google Scholar 

Portela, A., & Esteller, M. (2010). Epigenetic modifications and human disease. Nature Biotechnology, 28, 1057–1068. https://doi.org/10.1038/nbt.1685

Article  PubMed  CAS  Google Scholar 

Poulose, S. M., Miller, M. G., Scott, T., & Shukitt-Hale, B. (2017). Nutritional factors affecting adult neurogenesis and cognitive function. Advances in Nutrition, 8, 804–811. https://doi.org/10.3945/an.117.016261

Article  PubMed  PubMed Central  CAS  Google Scholar 

Reynolds, E. H. (2002). Benefits and risks of folic acid to the nervous system. Journal of Neurology, Neurosurgery and Psychiatry, 72, 567–571. https://doi.org/10.1136/jnnp.72.5.567

Article  PubMed  PubMed Central  CAS  Google Scholar 

Reynolds, E. H. (2006). Vitamin B12, folic acid, and the nervous system. Lancet Neurology, 5, 949–960. https://doi.org/10.1016/S1474-4422(06)70598-1

Article 

Comments (0)

No login
gif