Exploring the potential performance of 0.2 T low-field unshielded MRI scanner using deep learning techniques

Plewes DB, Kucharczyk W (2012) Physics of MRI: a primer. J Magn Reson Imaging 35(5):1038–1054. https://doi.org/10.1002/jmri.23642

Article  PubMed  Google Scholar 

Marques JP, Simonis FF, Webb AG (2019) Low-field MRI: an MR physics perspective. J Magn Reson Imaging 49(6):1528–1542. https://doi.org/10.1002/jmri.26637

Article  PubMed  PubMed Central  Google Scholar 

Sarracanie M, Salameh N (2020) Low-field MRI: how low can we go? A fresh view on an old debate. Front Phy 8:172. https://doi.org/10.3389/fphy.2020.00172

Article  Google Scholar 

Arnold TC, Freeman CW, Litt B et al (2023) Low-field MRI: clinical promise and challenges. J Magn Reson Imaging 57(1):25–44. https://doi.org/10.1002/jmri.28408

Article  PubMed  Google Scholar 

Geethanath S, Vaughan JT Jr (2019) Accessible magnetic resonance imaging: a review. J Magn Reson Imaging 49:e65–e77. https://doi.org/10.1002/jmri.26638

Article  PubMed  Google Scholar 

Salameh N, Lurie DJ, Ipek Ö et al (2023) Exploring the foothills: benefits below 1 Tesla? Magn Reson Mater Phy 36(3):329–333. https://doi.org/10.1007/s10334-023-01106-x

Article  Google Scholar 

Shen S, Xu Z, Koonjoo N et al (2020) Optimization of a close-fitting volume RF coil for brain imaging at 6.5 mT using linear programming. IEEE T Biomed Eng 68(4):1106–1114. https://doi.org/10.1109/TBME.2020.3002077

Article  Google Scholar 

Shen S, Koonjoo N, Kong X et al (2022) Gradient coil design and optimization for an ultra-low-field MRI system. Appl Magn Reson 53(6):895–914. https://doi.org/10.1007/s00723-022-01470-2

Article  CAS  Google Scholar 

Muñoz F, Lim Y, Cui SX et al (2023) Evaluation of a novel 8-channel RX coil for speech production MRI at 0.55 T. Magn Reson Mater Phy 36(3):419–426. https://doi.org/10.1007/s10334-022-01036-0

Article  CAS  Google Scholar 

O’Reilly T, Teeuwisse W, Webb A (2019) Three-dimensional MRI in a homogenous 27 cm diameter bore Halbach array magnet. J Magn Reson 307:106578. https://doi.org/10.1016/j.jmr.2019.106578

Article  CAS  PubMed  Google Scholar 

McDaniel PC, Cooley CZ, Stockmann JP et al (2019) The MR Cap: a single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. Magn Reson Med 82(5):1946–1960. https://doi.org/10.1002/mrm.27861

Article  PubMed  PubMed Central  Google Scholar 

Cooley CZ, McDaniel PC, Stockmann JP et al (2021) A portable scanner for magnetic resonance imaging of the brain. Nat Biomed Eng 5(3):229–239. https://doi.org/10.1038/s41551-020-00641-5

Article  CAS  PubMed  Google Scholar 

Wei S, Wei Z, Wang Z et al (2023) Optimization design of a permanent magnet used for a low field (0.2 T) movable MRI system. Magn Reson Mater Phy. https://doi.org/10.1007/s10334-023-01090-2

Article  Google Scholar 

Obungoloch J, Muhumuza I, Teeuwisse W et al (2023) On-site construction of a point-of-care low-field MRI system in Africa. NMR Biomed. https://doi.org/10.1002/nbm.4917

Article  PubMed  PubMed Central  Google Scholar 

Srinivas SA, Cauley SF, Stockmann JP et al (2021) External dynamic interference estimation and removal (EDITER) for low field MRI. Magn Reson Med 87(2):614–628. https://doi.org/10.1002/mrm.28992

Article  PubMed  PubMed Central  Google Scholar 

Yang L, He W, He Y et al (2022) Active EMI suppression system for a 50 mT unshielded portable MRI scanner. IEEE T Biomed Eng. https://doi.org/10.1109/TBME.2022.3170450

Article  Google Scholar 

Tamada D, Kose K (2014) Two-dimensional compressed sensing using the cross-sampling approach for low-field MRI systems. IEEE T Med Imaging 33(9):1905–1912. https://doi.org/10.1109/TMI.2014.2326864

Article  Google Scholar 

Sarracanie M, Armstrong BD, Stockmann J et al (2014) High speed 3D overhauser-enhanced MRI using combined b-SSFP and compressed sensing. Magn Reson Med 71(2):735–745. https://doi.org/10.1002/mrm.24705

Article  PubMed  Google Scholar 

Lurie DJ, Aime S, Baroni S et al (2010) Fast field-cycling magnetic resonance imaging. CR Phy 11(2):136–148. https://doi.org/10.1016/j.crhy.2010.06.012

Article  CAS  Google Scholar 

Broche LM, Ross PJ, Davies GR et al (2019) A whole-body fast field-cycling scanner for clinical molecular imaging studies. Sci Rep 9(1):10402. https://doi.org/10.1038/s41598-019-46648-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarracanie M (2022) Fast quantitative low-field magnetic resonance imaging with OPTIMUM-optimized magnetic resonance fingerprinting using a stationary steady-state cartesian approach and accelerated acquisition schedules. Invest Radiol 57(4):263–271. https://doi.org/10.1097/RLI.0000000000000836

Article  CAS  PubMed  Google Scholar 

Ayde R, Vornehm M, Zhao Y et al (2024) MRI at low field: a review of software solutions for improving SNR. NMR Biomed. https://doi.org/10.1002/nbm.5268

Article  PubMed  PubMed Central  Google Scholar 

Ayde R, Senft T, Salameh N et al (2022) Deep learning for fast low-field MRI acquisitions. Sci Rep 12(1):11394. https://doi.org/10.1038/s41598-022-14039-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu B, Liu JZ, Cauley SF et al (2018) Image reconstruction by domain-transform manifold learning. Nature 555(7697):487–492. https://doi.org/10.1038/nature25988

Article  CAS  PubMed  Google Scholar 

Koonjoo N, Zhu B, Bagnall GC et al (2021) Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci Rep 11(1):8248. https://doi.org/10.1038/s41598-021-87482-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Leong AT, Zhao Y et al (2021) A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun 12(1):7238. https://doi.org/10.1038/s41467-021-27317-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Xiao L, Liu Y et al (2023) Electromagnetic interference elimination via active sensing and deep learning prediction for radiofrequency shielding-free MRI. NMR Biomed 37(7):e4956. https://doi.org/10.1002/nbm.4956

Article  CAS  PubMed  Google Scholar 

Zhao Y, Xiao L, Hu J et al (2024) Robust EMI elimination for RF shielding-free MRI through deep learning direct MR signal prediction. Magn Reson Med. https://doi.org/10.1002/mrm.30046

Article  PubMed  PubMed Central  Google Scholar 

Lau V, Xiao L, Zhao Y et al (2023) Pushing the limits of low-cost ultralow-field MRI by dual-acquisition deep learning 3D superresolution. Magn Reson Med 90(2):400–416. https://doi.org/10.1002/mrm.29642

Article  PubMed  Google Scholar 

Zhao Y, Ding Y, Lau V et al (2024) Whole-body magnetic resonance imaging at 0.05 Tesla. Science 384(6696):eadm7168. https://doi.org/10.1126/science.adm7168

Article  CAS  PubMed  Google Scholar 

Li L, He Q, Wei S et al (2024) Fast, high-quality, and unshielded 0.2 T low-field mobile MRI using minimal hardware resources. Magn Reson Mater Phy. https://doi.org/10.1007/s10334-024-01184-5

Article  Google Scholar 

Plenge E, Poot DHJ, Bernsen M et al (2012) Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? Magn Reson Med 68(6):1983–1993. https://doi.org/10.1002/mrm.24187

Article 

Comments (0)

No login
gif