Pfeil J et al (2021) Unique regional patterns of amyloid burden predict progression to prodromal and clinical stages of Alzheimer’s disease. Neurobiol Aging 106:119–129
CAS PubMed PubMed Central Google Scholar
Bateman RJ et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9):795–804
CAS PubMed PubMed Central Google Scholar
Jack CR et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurol 12(2):207–216
Sperling R, Mormino E, Johnson K (2014) The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron 84(3):608–622
CAS PubMed PubMed Central Google Scholar
Fiford CM et al (2021) Presumed small vessel disease, imaging and cognition markers in the Alzheimer’s Disease Neuroimaging Initiative. Brain Commun 3(4):fcab226
PubMed PubMed Central Google Scholar
Aisen PS et al (2010) Clinical Core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans. Alzheimer’s Dement 6(3):239–246
Edmonds EC et al (2019) Early versus late MCI: improved MCI staging using a neuropsychological approach. Alzheimer’s Dement 15(5):699–708
Park CJ et al (2022) Predicting conversion of brain β-amyloid positivity in amyloid-negative individuals. Alzheimer’s Res Ther 14(1):129
Fowler C et al (2021) Fifteen years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study: progress and observations from 2,359 older adults spanning the spectrum from cognitive normality to Alzheimer’s disease. J Alzheimer’s Dis Rep 5(1):443–468
Villemagne VL et al (2011) Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 69(1):181–192
CAS PubMed PubMed Central Google Scholar
Villemagne VL et al (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. The Lancet Neurol 12(4):357–367
Lim YY et al (2013) Aβ amyloid, cognition, and APOE genotype in healthy older adults. Alzheimer’s Dement 9(5):538–545
Kumar, A., et al., Alzheimer disease (nursing). 2021.
Iaccarino, L. et al., A practical oveview of the use of amyloid-PET Centiloid values in clinical trials and research, Alz&Dem, 2024, submitted.
Jagust WJ et al (2021) Initiative, Temporal dynamics of β-amyloid accumulation in aging and Alzheimer disease. Neurology 96(9):e1347–e1357
CAS PubMed PubMed Central Google Scholar
Betthauser TJ et al (2022) Alzheimer’s Disease Neuroimaging Initiative, Multi-method investigation of factors influencing amyloid onset and impairment in three cohorts. Brain 145:4065–4079
PubMed PubMed Central Google Scholar
Iaccarino L et al (2019) Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET. Annals Clin Trans Neurol 6(6):1113–1120
Vos SJ et al (2015) Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain 138(5):1327–1338
PubMed PubMed Central Google Scholar
Epstein, A.J., Estimating Progression Rates Across the Spectrum of Alzheimer’s Disease for Amyloid-Positive Individuals Using National Alzheimer’s Coordinating Center Data. 2021.
Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356
Sims JR et al (2023) Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 330(6):512–527
CAS PubMed PubMed Central Google Scholar
Van Dyck CH et al (2023) Lecanemab in early Alzheimer’s disease. N Engl J Med 388(1):9–21
Cook SF, Bies RR (2016) Disease progression modeling: key concepts and recent developments. Current Pharmacol Rep 2:221–230
Gueorguieva I et al (2023) Disease progression model using the integrated Alzheimer’s disease rating scale. Alzheimer’s Dement 19(6):2253–2264
Posner H et al (2017) Outcomes assessment in clinical trials of Alzheimer’s disease and its precursors: readying for short-term and long-term clinical trial needs. Innov Clin Neurosci 14(1–2):22
PubMed PubMed Central Google Scholar
Sperling RA et al (2014) The A4 study: stopping AD before symptoms begin? Sci Trans Med 6(228):228fs13-228fs13
Hooker, A., M. Karlsson, and E. Jonsson, Xpose4: tools for nonlinear mixed-effect model building and diagnostics. R package version 4.6. 1. 2014.
Mould, D.R., Developing models of disease progression. Pharmacometrics: the science of quantitative pharmacology. Wiley, Hoboken, 2007: p. 547–581.
Katsube, T., et al. Characterization of Stepwise Covariate Model Building Combined with Cross-Validation. in PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe. 2012.
Dosne A-G et al (2016) Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling. J Pharmacokinet Pharmacodyn 43(6):583–596
PubMed PubMed Central Google Scholar
Holford N (2013) A time to event tutorial for pharmacometricians. CPT: Pharmacomet Syst Pharmacol 2(5):1–8
Navitsky M, Joshi AD, Kennedy I et al (2018) Standardization of amyloid quantitation with florbetapir standardized uptake value ratios to the Centiloid scale. Alzheimer’s Dement 14(12):1565–1571. https://doi.org/10.1016/j.jalz.2018.06.1353
Reisberg B, Gauthier S (2008) Current evidence for subjective cognitive impairment (SCI) as the pre-mild cognitive impairment (MCI) stage of subsequently manifest Alzheimer’s disease. Int Psychogeriatr 20(1):1–16
Jessen F et al (2010) Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment. Arch Gen Psychiat 67(4):414–422
Reisberg B et al (2008) The pre–mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease. Alzheimers Dement 4(1):S98–S108
Jessen F et al (2014) AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimers Dement 10(1):76–83
Choe YM et al (2018) Subjective memory complaint as a useful tool for the early detection of Alzheimer’s disease. Neuropsychiat Dis Treat 14:2451–2460
Risacher SL et al (2013) The role of apolipoprotein E (APOE) genotype in early mild cognitive impairment (E-MCI). Front Aging Neurosci 5:11
PubMed PubMed Central Google Scholar
Husain MA, Laurent B, Plourde M (2021) APOE and Alzheimer’s disease: from lipid transport to physiopathology and therapeutics. Front Neurosci 15:630502
PubMed PubMed Central Google Scholar
Farrer LA et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA 278(16):1349–1356
Neu SC et al (2017) Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol 74(10):1178–1189
PubMed PubMed Central Google Scholar
Qian J et al (2017) APOE-related risk of mild cognitive impairment and dementia for prevention trials: an analysis of four cohorts. PLoS Med 14(3):e1002254
PubMed PubMed Central Google Scholar
Baek MS et al (2020) Effect of APOE ε4 genotype on amyloid-β and tau accumulation in Alzheimer’s disease. Alzheimer’s Res Ther 12(1):1–12
Troutwine BR et al (2022) Apolipoprotein E and Alzheimer’s disease. Acta Pharmaceutica Sinica B 12(2):496–510
Joo SH, Lee CU (2021) Cerebral amyloid positivity prediction models using clinical data in subjects with mild cognitive impairment and dementia. Psychiat Investig 18(9):864
Patterson BW et al (2015) Age and amyloid effects on human central nervous system amyloid-beta kinetics. Ann Neurol 78(3):439–453
CAS PubMed PubMed Central Google Scholar
Mawuenyega KG et al (2010) Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330(6012):1774–1774
CAS PubMed PubMed Central Google Scholar
Association AS (2016) 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 12(4):459–509
Comments (0)