World Health Organization model list of essential medicines: 21st list 2019. https://iris.who.int/handle/10665/325771. Accessed 8 July 2024
Rodríguez-Gascón A, Solinís MÁ, Isla A (2021) The role of PK/PD analysis in the development and evaluation of antimicrobials. Pharmaceutics. https://doi.org/10.3390/PHARMACEUTICS13060833
Article PubMed PubMed Central Google Scholar
Asín-Prieto E, Rodríguez-Gascón A, Isla A (2015) Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother 21:319–329. https://doi.org/10.1016/J.JIAC.2015.02.001
de Velde F, Mouton JW, de Winter BCM et al (2018) Clinical applications of population pharmacokinetic models of antibiotics: challenges and perspectives. Pharmacol Res 134:280–288. https://doi.org/10.1016/J.PHRS.2018.07.005
Nielsen EI, Friberg LE (2013) Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 65:1053–1090. https://doi.org/10.1124/PR.111.005769
Holford NHG, Kimko HC, Monteleone JPR, Peck CC (2000) Simulation of clinical trials. Annu Rev Pharmacol Toxicol 40:209–234. https://doi.org/10.1146/ANNUREV.PHARMTOX.40.1.209
Article PubMed CAS Google Scholar
Brindley PG, Dunn WF (2009) Simulation for clinical research trials: a theoretical outline. J Crit Care 24:164–167. https://doi.org/10.1016/J.JCRC.2009.01.009
Bonate PL (2001) A brief introduction to Monte Carlo simulation. Clin Pharmacokinet 40:15–22. https://doi.org/10.2165/00003088-200140010-00002/METRICS
Article PubMed CAS Google Scholar
Roberts JA, Kirkpatrick CMJ, Lipman J (2011) Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother 66:227–231. https://doi.org/10.1093/JAC/DKQ449
Article PubMed CAS Google Scholar
Teutonico D, Musuamba F, Maas HJ et al (2015) Generating virtual patients by multivariate and discrete re-sampling techniques. Pharm Res 32:3228–3237. https://doi.org/10.1007/S11095-015-1699-X
Article PubMed PubMed Central CAS Google Scholar
Bonate PL (2011) Covariate distribution models in simulation. AAPS Adv Pharm Sci Ser 2011:505–526. https://doi.org/10.1007/978-1-4419-7415-0_22/COVER
Tängdén T, Ramos Martín V, Felton TW et al (2017) The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med 43:1021–1032. https://doi.org/10.1007/S00134-017-4780-6
Zelenitsky SA, Ariano RE, Zhanel GG (2011) Pharmacodynamics of empirical antibiotic monotherapies for an intensive care unit (ICU) population based on Canadian surveillance data. J Antimicrob Chemother 66:343–349. https://doi.org/10.1093/JAC/DKQ348
Article PubMed CAS Google Scholar
Conil JM, Georges B, Ruiz S et al (2011) Tobramycin disposition in ICU patients receiving a once daily regimen: population approach and dosage simulations. Br J Clin Pharmacol 71:61–71. https://doi.org/10.1111/J.1365-2125.2010.03793.X
Article PubMed PubMed Central CAS Google Scholar
Udy AA, Lipman J, Jarrett P et al (2015) Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care 19:28. https://doi.org/10.1186/s13054-015-0750-y
Article PubMed PubMed Central Google Scholar
Eisert A, Lanckohr C, Frey J et al (2021) Comparison of two empirical prolonged infusion dosing regimens for meropenem in patients with septic shock: a two-center pilot study. Int J Antimicrob Agents 57:106289. https://doi.org/10.1016/J.IJANTIMICAG.2021.106289
Article PubMed CAS Google Scholar
Xie F, Wang Y, Peng Y et al (2021) Pharmacokinetic/pharmacodynamic evaluation of tobramycin dosing in critically ill patients: the Hartford nomogram does not fit. J Antimicrob Chemother 76:2335–2341. https://doi.org/10.1093/JAC/DKAB164
Article PubMed CAS Google Scholar
Xie F, Li S, Cheng Z (2020) Population pharmacokinetics and dosing considerations of daptomycin in critically ill patients undergoing continuous renal replacement therapy. J Antimicrob Chemother 75:1559–1566. https://doi.org/10.1093/JAC/DKAA028
Article PubMed CAS Google Scholar
Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41. https://doi.org/10.1159/000180580
Article PubMed CAS Google Scholar
Pollard TJ, Johnson AEW, Raffa JD et al (2018) The eICU Collaborative research database, a freely available multi-center database for critical care research. Sci data. https://doi.org/10.1038/SDATA.2018.178
Article PubMed PubMed Central Google Scholar
Kristoffersson AN, David-Pierson P, Parrott NJ et al (2016) Simulation-based evaluation of PK/PD Indices for meropenem across patient groups and experimental designs. Pharm Res 33:1115–1125. https://doi.org/10.1007/S11095-016-1856-X
Article PubMed CAS Google Scholar
Peng Y, Minichmayr IK, Liu H et al (2024) Multistate modeling for survival analysis in critically ill patients treated with meropenem. CPT Pharmacometrics Syst Pharmacol 13:222. https://doi.org/10.1002/PSP4.13072
Article PubMed CAS Google Scholar
Imani S, Buscher H, Marriott D et al (2017) Too much of a good thing: a retrospective study of β-lactam concentration-toxicity relationships. J Antimicrob Chemother 72:2891–2897. https://doi.org/10.1093/JAC/DKX209
Article PubMed CAS Google Scholar
Peris-Marti JF, Borras-Blasco J, Rosique-Robles JD, Gonzalez-Delgado M (2004) Evaluation of once daily tobramycin dosing in critically ill patients through Bayesian simulation. J Clin Pharm Ther 29:65–70. https://doi.org/10.1111/J.1365-2710.2003.00539.X
Article PubMed CAS Google Scholar
Begg E, Barclay M, Duffull S (1995) A suggested approach to once-daily aminoglycoside dosing. Br J Clin Pharmacol 39:605–609. https://doi.org/10.1111/J.1365-2125.1995.TB05719.X
Article PubMed PubMed Central CAS Google Scholar
Barclay ML, Duffully SB, Begg EJ, Buttimore RC (1995) Experience of once-daily aminoglycoside dosing using a target area under the concentration-time curve. Aust N Z J Med 25:230–235. https://doi.org/10.1111/J.1445-5994.1995.TB01529.X
Article PubMed CAS Google Scholar
Kellum JA, Lameire N, Aspelin P et al (2012) Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138. https://doi.org/10.1038/KISUP.2012.1
Safdar N, Andes D, Craig WA (2004) In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother 48:63–68. https://doi.org/10.1128/AAC.48.1.63-68.2004
Article PubMed PubMed Central CAS Google Scholar
Bhavnani SM, Rubino CM, Ambrose PG, Drusano GL (2010) Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin Infect Dis 50:1568–1574. https://doi.org/10.1086/652767
Article PubMed CAS Google Scholar
Vincent JL, Rello J, Marshall J et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329. https://doi.org/10.1001/JAMA.2009.175
Comments (0)