Siassi B, Noori S, Wong P, Acherman R practical neonatal echocardiography. McGraw Hill Professional; 2018. 297p.
Mugloo MM, Malik S, Akhtar R. Echocardiographic Inferior Vena Cava Measurement As An Alternative to Central Venous Pressure Measurement in Neonates. Indian J Pediatr. 2017;84:751–6.
Conlon TW, Baker D, Bhombal S. Cardiac point-of-care ultrasound: Practical integration in the pediatric and neonatal intensive care settings. Eur J Pediatr. 2024;183:1525–1541.
Singh Y. Echocardiographic evaluation of hemodynamics in neonates and children. Front Pediatr. 2017;5:201.
CAS PubMed PubMed Central Google Scholar
Mayse ML. Chapter 8. Ultrasound of the Inferior Vena Cava. In: Carmody KA, Moore CL, Feller-Kopman D, editors. Handbook of Critical Care and Emergency Ultrasound [Internet]. New York, NY: The McGraw-Hill Companies; 2011 [cited 2024 Oct 23]. Available from: https://www.accessanesthesiology.mhmedical.com/content.aspx?aid=56300602
McNamara PJ, Jain A, El-Khuffash A, Giesinger R, Weisz D, Freud L, et al. Guidelines and Recommendations for Targeted Neonatal Echocardiography and Cardiac Point-of-Care Ultrasound in the Neonatal Intensive Care Unit: An Update from the American Society of Echocardiography. J Am Soc Echocardiogr. 2024;37:171–215.
Saini SS, Sundaram V, Kumar P, Rohit MK. Functional echocardiographic preload markers in neonatal septic shock. J Matern-Fetal Neonatal Med J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2022;35:6815–22.
Pawale D, Murki S, Kulkarni D, Vardhelli V, Sharma D, Oleti T, et al. Echocardiographic assessment of hemodynamic changes in preterm neonates with shock: a prospective pragmatic cohort study. Eur J Pediatr. 2020;179:1893–9.
Abdel-Hady H, Matter M, Hammad A, El-Refaay A, Aly H. Hemodynamic changes during weaning from nasal continuous positive airway pressure. Pediatrics 2008;122:e1086–1090.
Bandyopadhyay T, Saili A, Yadav DK, Kumar A. Correlation of functional echocardiography and clinical parameters in term neonates with shock. J Neonatal-Perinat Med. 2020;13:167–73.
Kieliszczyk J, Baranowski W, Kosiak W. Usefulness of ultrasound examination in the evaluation of a neonate’s body fluid status. J Ultrason. 2016;16:125–34.
PubMed PubMed Central Google Scholar
Zubrow AB, Hulman S, Kushner H, Falkner B. Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicenter study. Philadelphia Neonatal Blood Pressure Study Group. J Perinatol J Calif Perinat Assoc. 1995;15:470–9.
Elsayed Y, Ahmed F. Blood pressure normative values in preterm infants during postnatal transition. Pediatr Res. 2023; Available from: https://www.nature.com/articles/s41390-023-02788-8
Arthur R. The neonatal chest X-ray. Paediatr Respir Rev. 2001;2:311–23.
El-Khuffash AF, McNamara PJ. Neonatologist-performed functional echocardiography in the neonatal intensive care unit. Semin Fetal Neonatal Med. 2011;16:50–60.
Osman AA, Albalawi M, Dakshinamurti S, Hinton M, Elhawary F, Mawlana W, et al. The perfusion index histograms predict patent ductus arteriosus requiring treatment in preterm infants. Eur J Pediatr. 2021;180:1747–54.
Jain A, EL-Khuffash AF, Van Herpen CH, Resende MHF, Giesinger RE, Weisz D, et al. Cardiac function and ventricular interactions in persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med. 2021;22:e145–57.
Elsayed Y, Wahab MGA, Mohamed A, Fadel NB, Bhombal S, Yousef N, et al. Point-of-care ultrasound (POCUS) protocol for systematic assessment of the crashing neonate-expert consensus statement of the international crashing neonate working group. Eur J Pediatr. 2023;182:53–66.
Jasani B, Martins FF, Weisz DE, Jain A, Giesinger RE, Joye S, et al. Patent ductus arteriosus shunt volume in preterm neonates using pulmonary vein diastolic velocity. Pediatr Res. 2022;91:4–7.
Agata Y, Hiraishi S, Oguchi K, Nowatari M, Hiura K, Yashiro K, et al. Changes in pulmonary venous flow pattern during early neonatal life. Br Heart J. 1994;71:182–6.
CAS PubMed PubMed Central Google Scholar
Hong YM, Choi JY. Pulmonary venous flow from fetal to neonatal period. Early Hum Dev. 2000;57:95–103.
James AT, Corcoran JD, Franklin O, El-Khuffash AF. Clinical utility of right ventricular fractional area change in preterm infants. Early Hum Dev. 2016;92:19–23.
Kaptein MJ, Kaptein EM. Inferior vena cava collapsibility index: clinical validation and application for assessment of relative intravascular volume. Adv Chronic Kidney Dis. 2021;28:218–26.
Jarosz-Lesz A, Michalik K, Maruniak-Chudek I. Baseline diameters of inferior vena cava and abdominal aorta measured by ultrasonography in healthy term neonates during early neonatal adaptation period. J Ultrasound Med J Am Inst Ultrasound Med. 2018;37:181–9.
Sehgal A, Ruoss JL, Stanford AH, Lakshminrusimha S, McNamara PJ. Hemodynamic consequences of respiratory interventions in preterm infants. J Perinatol. 2022;42:1153–60.
PubMed PubMed Central Google Scholar
Hruda J, Rothuis EGM, van Elburg RM, Sobotka-Plojhar MA, Fetter WPF. Echocardiographic assessment of preload conditions does not help at the neonatal intensive care unit. Am J Perinatol. 2003;20:297–303.
Basu S, Sharron M, Herrera N, Mize M, Cohen J. Point-of-care ultrasound assessment of the inferior vena cava in mechanically ventilated critically ill children. J Ultrasound Med J Am Inst Ultrasound Med. 2020;39:1573–9.
Bilgili B, Haliloglu M, Tugtepe H, Umuroglu T. The assessment of intravascular volume with inferior vena cava and internal jugular vein distensibility indexes in children undergoing urologic surgery. J Investig Surg J Acad Surg Res. 2018;31:523–8.
Achar SK, Sagar MS, Shetty R, Kini G, Samanth J, Nayak C, et al. Respiratory variation in aortic flow peak velocity and inferior vena cava distensibility as indices of fluid responsiveness in anaesthetised and mechanically ventilated children. Indian J Anaesth. 2016;60:121–6.
PubMed PubMed Central Google Scholar
De Souza TH, Giatti MP, Nogueira RJN, Pereira RM, Soub ACS, Brandão MB. Inferior Vena Cava Ultrasound in Children: Comparing Two Common Assessment Methods*. Pediatr Crit Care Med. 2020;21:e186–91.
Narayanaswamy V, Harohalli AV, Swamy RS, Nagesh NK. Correlation of plethysmograph variability index with inferior vena cava index in spontaneously breathing neonates – a cross sectional study. Indian J Pediatr. 2024;91:81–3.
Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme JL, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30:1740–6.
Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30. Available from: http://link.springer.com/10.1007/s00134-004-2233-5
El-Khuffash A, McNamara PJ. Hemodynamic assessment and monitoring of premature infants. Clin Perinatol. 2017;44:377–93.
Wu TW, Azhibekov T, Seri I. Transitional hemodynamics in preterm neonates: clinical relevance. Pediatr Neonatol. 2016;57:7–18.
Chess PRB. Avery’s Neonatology Board Review E-Book: Certification and Clinical Refresher. Elsevier Health Sciences. 2024:231–238 p.
2023 American Heart Association and American Academy of Pediatrics Focused Update on Neonatal Resuscitation: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care [Internet]. [cited 2024 Feb 13]. Available from: https://www.ahajournals.org, https://doi.org/10.1161/CIR.0000000000001181
Horoz OO, Yildizdas D, Aslan N, Coban Y, Misirlioglu M, Haytoglu Z, et al. Sonographic measurements of Inferior Vena Cava, Aorta, anda IVC/aorta ratio in healthy children. Niger J Clin Pr. 2022;25:825–32.
Comments (0)