Alrouji M, Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Elekhnawy E, Batiha GE (2023) DPP-4 inhibitors and type 2 diabetes mellitus in Parkinson’s disease: a mutual relationship. Pharmacol Rep 75(4):923–936. https://doi.org/10.1007/s43440-023-00500-5
Article CAS PubMed Google Scholar
Assar ME, Angulo J, Rodriguez-Manas L (2016) Diabetes and ageing-induced vascular inflammation. J Physiol 594(8):2125–2146. https://doi.org/10.1113/JP270841
Article CAS PubMed Google Scholar
Azami M, Moradkhani A, Afraie M, Khateri S, Sharifian E, Zamani K, Moradi Y (2023) The risk of Parkinson’s disease in diabetic people: an updated systematic review and meta-analysis. Acta Neurol Belg. https://doi.org/10.1007/s13760-023-02424-6
Badawi GA, Abd El Fattah MA, Zaki HF, El Sayed MI (2019) Sitagliptin and liraglutide modulate L-dopa effect and attenuate dyskinetic movements in Rotenone-Lesioned rats. Neurotox Res 35(3):635–653. https://doi.org/10.1007/s12640-019-9998-3
Article CAS PubMed Google Scholar
Ballardin D, Makrini-Maleville L, Seper A, Valjent E, Rebholz H (2024) 5-HT4R agonism reduces L-DOPA-induced dyskinesia via striatopallidal neurons in unilaterally 6-OHDA lesioned mice. Neurobiol Dis 198:106559. https://doi.org/10.1016/j.nbd.2024.106559
Article CAS PubMed Google Scholar
Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia Nigra Pars compacta. J Neurosci 25(26):6251–6259. https://doi.org/10.1523/JNEUROSCI.4601-04.2005
Article CAS PubMed PubMed Central Google Scholar
Bastide MF, Dovero S, Charron G, Porras G, Gross CE, Fernagut PO, Bezard E (2014) Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia. Neurobiol Dis 62:179–192. https://doi.org/10.1016/j.nbd.2013.09.020
Article CAS PubMed Google Scholar
Beck G, Zhang J, Fong K, Mochizuki H, Mouradian MM, Papa SM (2021) Striatal DeltaFosB gene suppression inhibits the development of abnormal involuntary movements induced by L-Dopa in rats. Gene Ther 28(12):760–770. https://doi.org/10.1038/s41434-021-00249-7
Article CAS PubMed PubMed Central Google Scholar
Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P Jr., Lerner RA, Kelly JW (2006) Elevated levels of oxidized cholesterol metabolites in lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol 2(5):249–253. https://doi.org/10.1038/nchembio782
Article CAS PubMed Google Scholar
Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139 Suppl 1:216–231. https://doi.org/10.1111/jnc.13731
Cao X, Yasuda T, Uthayathas S, Watts RL, Mouradian MM, Mochizuki H, Papa SM (2010) Striatal overexpression of DeltaFosB reproduces chronic levodopa-induced involuntary movements. J Neurosci 30(21):7335–7343. https://doi.org/10.1523/JNEUROSCI.0252-10.2010
Article CAS PubMed PubMed Central Google Scholar
Cenci MA, Crossman AR (2018) Animal models of l-dopa-induced dyskinesia in Parkinson’s disease. Mov Disord 33(6):889–899. https://doi.org/10.1002/mds.27337
Article CAS PubMed Google Scholar
Cereda E, Barichella M, Cassani E, Caccialanza R, Pezzoli G (2012) Clinical features of Parkinson disease when onset of diabetes came first: A case-control study. Neurology 78(19):1507–1511. https://doi.org/10.1212/WNL.0b013e3182553cc9
Article CAS PubMed Google Scholar
Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138(4):628–644. https://doi.org/10.1016/j.cell.2009.08.005
Article CAS PubMed PubMed Central Google Scholar
Cotzias GC (1968) L-Dopa for parkinsonism. N Engl J Med 278(11):630. https://doi.org/10.1056/nejm196803142781127
Article CAS PubMed Google Scholar
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909. https://doi.org/10.1016/s0896-6273(03)00568-3
Article CAS PubMed Google Scholar
Doucet JP, Nakabeppu Y, Bedard PJ, Hope BT, Nestler EJ, Jasmin BJ, Chen JS, Iadarola MJ, St-Jean M, Wigle N, Blanchet P, Grondin R, Robertson GS (1996) Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum. Eur J Neurosci 8(2):365–381. https://doi.org/10.1111/j.1460-9568.1996.tb01220.x
Article CAS PubMed Google Scholar
Fasano S, Bezard E, D’Antoni A, Francardo V, Indrigo M, Qin L, Dovero S, Cerovic M, Cenci MA, Brambilla R (2010) Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc Natl Acad Sci U S A 107(50):21824–21829. https://doi.org/10.1073/pnas.1012071107
Article PubMed PubMed Central Google Scholar
Flory J, Lipska K (2019) Metformin in 2019. JAMA 321(19):1926–1927. https://doi.org/10.1001/jama.2019.3805
Article PubMed PubMed Central Google Scholar
Franklin KBJ, George Paxinos (2007) The mouse brain in stereotaxic coordinates. 3rd edition edn. Academic Press
Gomez G, Escande MV, Suarez LM, Rela L, Belforte JE, Moratalla R, Murer MG, Gershanik OS, Taravini IRE (2019) Changes in dendritic spine density and inhibitory perisomatic connectivity onto medium spiny neurons in L-Dopa-Induced dyskinesia. Mol Neurobiol 56(9):6261–6275. https://doi.org/10.1007/s12035-019-1515-4
Article CAS PubMed Google Scholar
Greenamyre JT, Sherer TB, Betarbet R, Panov AV (2001) Complex I and Parkinson’s disease. IUBMB Life 52(3–5):135–141. https://doi.org/10.1080/15216540152845939
Article CAS PubMed Google Scholar
Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20(11):3993–4001. https://doi.org/10.1523/JNEUROSCI.20-11-03993.2000
Hwang Y, Ryu JY, Jeong SH (2021) Effects of disinformation using Deepfake: the protective effect of media literacy education. Cyberpsychol Behav Soc Netw 24(3):188–193. https://doi.org/10.1089/cyber.2020.0174
Iancu R, Mohapel P, Brundin P, Paul G (2005) Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res 162(1):1–10. https://doi.org/10.1016/j.bbr.2005.02.023
Article CAS PubMed Google Scholar
Ide M, Sonoda N, Inoue T, Kimura S, Minami Y, Makimura H, Hayashida E, Hyodo F, Yamato M, Takayanagi R, Inoguchi T (2020) The dipeptidyl peptidase-4 inhibitor, Linagliptin, improves cognitive impairment in streptozotocin-induced diabetic mice by inhibiting oxidative stress and microglial activation. PLoS ONE 15(2):e0228750. https://doi.org/10.1371/journal.pone.0228750
Article CAS PubMed PubMed Central Google Scholar
Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S (2021) Neuroprotection by dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide-1 analogs via the modulation of AKT-signaling pathway in Alzheimer’s disease. World J Biol Chem 12(6):104–113. https://doi.org/10.4331/wjbc.v12.i6.104
Article PubMed PubMed Central Google Scholar
Jeong SH, Chung SJ, Yoo HS, Hong N, Jung JH, Baik K, Lee YH, Sohn YH, Lee PH (2021) Beneficial effects of dipeptidyl peptidase-4 inhibitors in diabetic Parkinson’s disease. Brain 144(4):1127–1137. https://doi.org/10.1093/brain/awab015
Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA (2004) Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis 17(2):219–236. https://doi.org/10.1016/j.nbd.2004.07.005
Comments (0)