Sitagliptin attenuates L-dopa-induced dyskinesia by regulating mitochondrial proteins and neuronal activity in a 6-OHDA-induced mouse model of Parkinson’s disease

Alrouji M, Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Elekhnawy E, Batiha GE (2023) DPP-4 inhibitors and type 2 diabetes mellitus in Parkinson’s disease: a mutual relationship. Pharmacol Rep 75(4):923–936. https://doi.org/10.1007/s43440-023-00500-5

Article  CAS  PubMed  Google Scholar 

Assar ME, Angulo J, Rodriguez-Manas L (2016) Diabetes and ageing-induced vascular inflammation. J Physiol 594(8):2125–2146. https://doi.org/10.1113/JP270841

Article  CAS  PubMed  Google Scholar 

Azami M, Moradkhani A, Afraie M, Khateri S, Sharifian E, Zamani K, Moradi Y (2023) The risk of Parkinson’s disease in diabetic people: an updated systematic review and meta-analysis. Acta Neurol Belg. https://doi.org/10.1007/s13760-023-02424-6

Article  PubMed  Google Scholar 

Badawi GA, Abd El Fattah MA, Zaki HF, El Sayed MI (2019) Sitagliptin and liraglutide modulate L-dopa effect and attenuate dyskinetic movements in Rotenone-Lesioned rats. Neurotox Res 35(3):635–653. https://doi.org/10.1007/s12640-019-9998-3

Article  CAS  PubMed  Google Scholar 

Ballardin D, Makrini-Maleville L, Seper A, Valjent E, Rebholz H (2024) 5-HT4R agonism reduces L-DOPA-induced dyskinesia via striatopallidal neurons in unilaterally 6-OHDA lesioned mice. Neurobiol Dis 198:106559. https://doi.org/10.1016/j.nbd.2024.106559

Article  CAS  PubMed  Google Scholar 

Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia Nigra Pars compacta. J Neurosci 25(26):6251–6259. https://doi.org/10.1523/JNEUROSCI.4601-04.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bastide MF, Dovero S, Charron G, Porras G, Gross CE, Fernagut PO, Bezard E (2014) Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia. Neurobiol Dis 62:179–192. https://doi.org/10.1016/j.nbd.2013.09.020

Article  CAS  PubMed  Google Scholar 

Beck G, Zhang J, Fong K, Mochizuki H, Mouradian MM, Papa SM (2021) Striatal DeltaFosB gene suppression inhibits the development of abnormal involuntary movements induced by L-Dopa in rats. Gene Ther 28(12):760–770. https://doi.org/10.1038/s41434-021-00249-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P Jr., Lerner RA, Kelly JW (2006) Elevated levels of oxidized cholesterol metabolites in lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol 2(5):249–253. https://doi.org/10.1038/nchembio782

Article  CAS  PubMed  Google Scholar 

Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139 Suppl 1:216–231. https://doi.org/10.1111/jnc.13731

Article  CAS  Google Scholar 

Cao X, Yasuda T, Uthayathas S, Watts RL, Mouradian MM, Mochizuki H, Papa SM (2010) Striatal overexpression of DeltaFosB reproduces chronic levodopa-induced involuntary movements. J Neurosci 30(21):7335–7343. https://doi.org/10.1523/JNEUROSCI.0252-10.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cenci MA, Crossman AR (2018) Animal models of l-dopa-induced dyskinesia in Parkinson’s disease. Mov Disord 33(6):889–899. https://doi.org/10.1002/mds.27337

Article  CAS  PubMed  Google Scholar 

Cereda E, Barichella M, Cassani E, Caccialanza R, Pezzoli G (2012) Clinical features of Parkinson disease when onset of diabetes came first: A case-control study. Neurology 78(19):1507–1511. https://doi.org/10.1212/WNL.0b013e3182553cc9

Article  CAS  PubMed  Google Scholar 

Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138(4):628–644. https://doi.org/10.1016/j.cell.2009.08.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cotzias GC (1968) L-Dopa for parkinsonism. N Engl J Med 278(11):630. https://doi.org/10.1056/nejm196803142781127

Article  CAS  PubMed  Google Scholar 

Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909. https://doi.org/10.1016/s0896-6273(03)00568-3

Article  CAS  PubMed  Google Scholar 

Doucet JP, Nakabeppu Y, Bedard PJ, Hope BT, Nestler EJ, Jasmin BJ, Chen JS, Iadarola MJ, St-Jean M, Wigle N, Blanchet P, Grondin R, Robertson GS (1996) Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum. Eur J Neurosci 8(2):365–381. https://doi.org/10.1111/j.1460-9568.1996.tb01220.x

Article  CAS  PubMed  Google Scholar 

Fasano S, Bezard E, D’Antoni A, Francardo V, Indrigo M, Qin L, Dovero S, Cerovic M, Cenci MA, Brambilla R (2010) Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc Natl Acad Sci U S A 107(50):21824–21829. https://doi.org/10.1073/pnas.1012071107

Article  PubMed  PubMed Central  Google Scholar 

Flory J, Lipska K (2019) Metformin in 2019. JAMA 321(19):1926–1927. https://doi.org/10.1001/jama.2019.3805

Article  PubMed  PubMed Central  Google Scholar 

Franklin KBJ, George Paxinos (2007) The mouse brain in stereotaxic coordinates. 3rd edition edn. Academic Press

Gomez G, Escande MV, Suarez LM, Rela L, Belforte JE, Moratalla R, Murer MG, Gershanik OS, Taravini IRE (2019) Changes in dendritic spine density and inhibitory perisomatic connectivity onto medium spiny neurons in L-Dopa-Induced dyskinesia. Mol Neurobiol 56(9):6261–6275. https://doi.org/10.1007/s12035-019-1515-4

Article  CAS  PubMed  Google Scholar 

Greenamyre JT, Sherer TB, Betarbet R, Panov AV (2001) Complex I and Parkinson’s disease. IUBMB Life 52(3–5):135–141. https://doi.org/10.1080/15216540152845939

Article  CAS  PubMed  Google Scholar 

Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20(11):3993–4001. https://doi.org/10.1523/JNEUROSCI.20-11-03993.2000

Hwang Y, Ryu JY, Jeong SH (2021) Effects of disinformation using Deepfake: the protective effect of media literacy education. Cyberpsychol Behav Soc Netw 24(3):188–193. https://doi.org/10.1089/cyber.2020.0174

Article  PubMed  Google Scholar 

Iancu R, Mohapel P, Brundin P, Paul G (2005) Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res 162(1):1–10. https://doi.org/10.1016/j.bbr.2005.02.023

Article  CAS  PubMed  Google Scholar 

Ide M, Sonoda N, Inoue T, Kimura S, Minami Y, Makimura H, Hayashida E, Hyodo F, Yamato M, Takayanagi R, Inoguchi T (2020) The dipeptidyl peptidase-4 inhibitor, Linagliptin, improves cognitive impairment in streptozotocin-induced diabetic mice by inhibiting oxidative stress and microglial activation. PLoS ONE 15(2):e0228750. https://doi.org/10.1371/journal.pone.0228750

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S (2021) Neuroprotection by dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide-1 analogs via the modulation of AKT-signaling pathway in Alzheimer’s disease. World J Biol Chem 12(6):104–113. https://doi.org/10.4331/wjbc.v12.i6.104

Article  PubMed  PubMed Central  Google Scholar 

Jeong SH, Chung SJ, Yoo HS, Hong N, Jung JH, Baik K, Lee YH, Sohn YH, Lee PH (2021) Beneficial effects of dipeptidyl peptidase-4 inhibitors in diabetic Parkinson’s disease. Brain 144(4):1127–1137. https://doi.org/10.1093/brain/awab015

Article  PubMed  Google Scholar 

Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA (2004) Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis 17(2):219–236. https://doi.org/10.1016/j.nbd.2004.07.005

Article 

Comments (0)

No login
gif