Localist neural plasticity identified by mutual information

Agetsuma, M., Sato, I., Tanaka, Y., Carrillo-Reid, L., Kasai, A., Noritake, A., & Nagai, T. (2023). Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation. Nature Communications, 14, 1. https://doi.org/10.1038/s41467-023-41547-5

Article  CAS  Google Scholar 

Carpenter, G. A. (2000). Combining distributed and localist computations in real-time neural networks. Behavioral and Brain Sciences, 23(4), 473–474. https://doi.org/10.1017/S0140525X00283350

Article  Google Scholar 

Choucry, A., Nomoto, M., & Inokuchi, K. (2024). Engram mechanisms of memory linking and identity. Nature Reviews Neuroscience, 25(6), 375–392. https://doi.org/10.1038/s41583-024-00814-0

Article  CAS  PubMed  Google Scholar 

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., Smola, A. (2020). Autogluon-tabular: Robust and accurate automl for structured data. https://arxiv.org/abs/2003.06505

Fuster, J. M. (1998). Cellular dynamics of network memory. Zeitschrift Für Naturforschung C, 53(7–8), 670–676. https://doi.org/10.1515/znc-1998-7-819

Article  CAS  Google Scholar 

Gal, E., Amsalem, O., Schindel, A., London, M., Schürmann, F., Markram, H., & Segev, I. (2021). The role of hub neurons in modulating cortical dynamics. Frontiers in Neural Circuits, 15, 1. https://doi.org/10.3389/fncir.2021.718270

Article  Google Scholar 

Gijsbers, P., Bueno, M.L.P., Coors, S., LeDell, E., Poirier, S., Thomas, J.. Vanschoren, J. (2023). AMLB: an AutoML Benchmark. arXiv:cs.LG. https://arxiv.org/abs/2207.12560

Gu, Y., Qi, Y., & Gong, P. (2019). Rich-club connectivity, diverse population coupling, and dynamical activity patterns emerging from local cortical circuits. PLOS Computational Biology, 15(4), 1–34. https://doi.org/10.1371/journal.pcbi.1006902

Article  CAS  Google Scholar 

Izhikevich, E. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15, 1063–1070. https://doi.org/10.1109/TNN.2004.832719

Article  PubMed  Google Scholar 

Jaeger, H. (2002). Adaptive nonlinear system identification with echo state networks. Proc. NIPS (Vol. 15). MIT Press. https://proceedings.neurips.cc/paper_files/paper/2002/file/426f990b332ef8193a61cc90516c1245-Paper.pdf

Josselyn, S., & Tonegawa, S. (2020). Memory engrams: Recalling the past and imagining the future. Science, 367, eaaw4325, https://doi.org/10.1126/science.aaw4325

Kim, J., Leahy, W., & Shlizerman, E. (2019). Neural interactome: Interactive simulation of a neuronal system. Frontiers in Computational Neuroscience, 13, 1. https://doi.org/10.3389/fncom.2019.00008

Article  Google Scholar 

Langille, J. J., & Brown, R. E. (2018). The synaptic theory of memory: A historical survey and reconciliation of recent opposition. Frontiers in Systems Neuroscience, 1,. https://doi.org/10.3389/fnsys.2018.00052

LeCun, Y., & Cortes, C. (2005). The MNIST database of handwritten digits. https://api.semanticscholar.org/CorpusID:60282629

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural computation, 14, 2531–60. https://doi.org/10.1162/089976602760407955

Article  PubMed  Google Scholar 

Park, S., Ko, S., Frankland, P., & Josselyn, S. (2024). Comparing behaviours induced by natural memory retrieval and optogenetic reactivation of an engram ensemble in mice. Philosophical Transactions B, 379, 20230227. https://doi.org/10.1098/rstb.2023.0227

Article  CAS  Google Scholar 

Pignatelli, M., Ryan, T., Roy, D., Lovett, C., Smith, L., Muralidhar, S., & Tonegawa, S. (2018). Engram cell excitability state determines the efficacy of memory retrieval. Neuron, 101, 1. https://doi.org/10.1016/j.neuron.2018.11.029

Article  CAS  Google Scholar 

Sampathkumar, V., Miller-Hansen, N. A., Sherman, S. M., & Kasthuri, N. (2021). Integration of signals from different cortical areas in higher order thalamic neurons. Proceedings of the National Academy of Sciences,118(30). e2104137118 https://doi.org/10.1073/pnas.2104137118

Scheler, G. (2016). Extreme pattern compression in lognormal networks. F1000Research 6:2177(poster), 1. https://doi.org/10.7490/f1000research.1113011.1

Scheler, G. (2017). Logarithmic distributions prove that intrinsic learning is Hebbian [version 2; peer review: 2 approved]. F1000Research, 6, 1222, https://doi.org/10.12688/f1000research.12130.2

Scheler, G. (2018). Neuromodulation influences synchronization and intrinsic read-out. F1000Research, 7, 1277. https://doi.org/10.12688/f1000research.15804.1

Scheler, G. (2023). Sketch of a novel approach to a neural model. arXiv:q-bio.NC. https://arxiv.org/abs/2209.06865

Schneidman, E., Bialek, W., & Berry, M. J. (2003). Synergy, redundancy, and independence in population codes. Journal of Neuroscience, 23(37), 11539–11553. https://doi.org/10.1523/JNEUROSCI.23-37-11539.2003

Article  CAS  PubMed  Google Scholar 

Schumann, M. L. (2025). Enhancing semi-supervised learning with a meta-feature based safeguard system. https://doi.org/10.13140/RG.2.2.18786.44486.

Sheintuch, L., Rubin, A., & Ziv, Y. (2022). Bias-free estimation of information content in temporally sparse neuronal activity. Plos Computational Biology,18(2), e1009832. https://doi.org/10.1371/journal.pcbi.1009832

Uytiepo, M., Zhu, Y., Bushong, E., Polli, F., Chou, K., Zhao, E.. Maximov, A. (2024). Synaptic architecture of a memory engram in the mouse hippocampus. bioRxiv, 1, https://doi.org/10.1101/2024.04.23.590812

Zeng, G. (2015). A unified definition of mutual information with applications in machine learning. Mathematical Problems in Engineering, 1,. https://doi.org/10.1155/2015/201874

Comments (0)

No login
gif