Allbritton, N. L., Meyer, T., & Streyer, L. (1992). Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science, 258, 1812–1815. https://doi.org/10.1126/science.1465619
Article CAS PubMed Google Scholar
Allen, N. J., & Barres, B. A. (2009). Glia – more than just brain glue. Nature, 457, 775–777.
Allen, N. J., & Lyons, D. A. (2018). Glia as architects of central nervous system formation and function. Science, 362, 181–185. https://doi.org/10.1126/science.aat0
Article CAS PubMed PubMed Central Google Scholar
Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (1999). Tripartite synapses: Glia, the unacknowledged partner. Trends in Neurosciences, 22, 208–215. https://doi.org/10.1016/S0166-2236(98)01349-6
Article CAS PubMed Google Scholar
Araque, A., Carmignoto, G., & Haydon, P. G. (2001a). Dynamic signaling between neurons and glia. Annual Review of Physiology, 63, 795–813.
Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (2001b). Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Euro. J. Neurosci., 10, 2129–2142. https://doi.org/10.1046/j.1460-9568.1998.00221.x
Aten, S., Kiyoshi, C. M., Arzola, E. P., Patterson, J. A., Taylor, A. T., Du, Y., Guiher, A. M., Philip, M., Camacho, E. G., Mediratta, D., & Collins, K. (2022). Ultrastructural view of astrocyte arborization, astrocyte-astrocyte and astrocyte-synapse contacts, intracellular vesicle-like structures, and mitochondrial network. Progress in Neurobiology, 213, 102264. https://doi.org/10.1016/j.pneurobio.2022.102264
Article CAS PubMed PubMed Central Google Scholar
Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., MacVicar, B. A., & Newman, E. A. (2010). Glial and neuronal control of brain blood flow. Nature, 468, 232–243.
CAS PubMed PubMed Central Google Scholar
Auld, D. S., & Robitaille, R. (2003). Glial cells and neurotransmission: An inclusive view of synaptic function. Neuron, 40, 389–400.
Beck, A., Nieden, R. Z., Schneider, H. P., & Deitmer, J. W. (2004). Calcium release from intracellular stores in rodent astrocytes and neurons in situ. Cell Calcium, 35, 47–58.
Ben Haim, L., & Rowitch, D. H. (2016). Functional diversity of astrocytes in neural circuit regulation. Nature Reviews Neuroscience, 18, 31–41.
Berridge, M. J. (1998). Neuronal calcium signaling. Neuron, 21, 13–26.
Berridge, M. J., & Irvine, R. F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312, 315–321.
Bezprozvanny, I., Watras, J., & Ehrlich, B. E. (1991). Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature, 351, 751–754.
Biess, A., Korkotian, E., & Holcman, D. (2011). Barriers to diffusion in dendrites and estimation of calcium spread following synaptic inputs. PLOS Computational Biology, 7, e1002182. https://doi.org/10.1371/journal.pcbi.1002182
Article CAS PubMed PubMed Central Google Scholar
Breit, M., & Queisser, G. (2018). What is required for neuronal calcium waves? A numerical parameter study. The Journal of Mathematical Neuroscience, 8, 1–22. https://doi.org/10.1186/s13408-018-0064-x
Brini, M., Calì, T., Ottolini, D., & Carafoli, E. (2012). The plasma membrane calcium pump in health and disease. FEBS Journal, 280, 5385–5397.
Burdakov, D., Petersen, O. H., & Verkhratsky, A. (2005). Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium, 38, 303–310.
Cao, P., Donovan, G., Falcke, M., & Sneyd, J. (2013). A stochastic model of calcium puffs based on single-channel data. Biophysical Journal, 105, 1133–1142.
CAS PubMed PubMed Central Google Scholar
Carafoli, E. (1992). The Ca2+ pump of the plasma membrane. Journal of Biological Chemistry, 267, 2115–2118.
Castillo, J. E., & Grone, R. D. (2003). A matrix analysis approach to higher-order approximations for divergence and gradients satisfying a global conservation law. Matrix Analysis and Applications, 1, 128–142. https://doi.org/10.1137/S0895479801398025
Chang, Y., Zhou, L., & Wang, J. (2013). Hopf bifurcation in a calcium oscillation model and its control: Frequency domain approach. International Journal of Bifurcation and Chaos, 23, 1350012. https://doi.org/10.1142/S0218127413500120
Charles, A. C., Kodali, S. K., & Tyndale, R. F. (1996). Intercellular calcium waves in neurons. Molecular and Cellular Neuroscience, 7, 337–353.
Corbino, J., Dumett, M., & Castillo, J. (2024). MOLE: Mimetic operators library enhanced. Journal of Open Source Software, 9, 6288. https://doi.org/10.21105/joss.06288
Cordova, D., Benner, E. A., Sacher, M. D., Rauh, J. J., Sopa, J. S., Lahm, G. P., Selby, P., Stevenson, T. M., Flexner, L., Gutteridge, S., Rhoades, D. F., Wu, L., Smith, R. M., & Tao, Y. (2006). Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesticide Biochemistry and Physiology, 84, 196–214. https://doi.org/10.1016/j.pestbp.2005.07.005
Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., & Smith, S. J. (1990). Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science, 247, 470–473.
Coronado, R., Morrissette, J., Sukhareva, M., & Vaughan, D. M. (1994). Structure and function of ryanodine receptors. American Journal of Physiology. Cell Physiology, 266, C1485–C1504.
Dani, J. W., Chernjavsky, A., & Smith, S. J. (1992). Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron, 8, 429–440.
Denizot, A., Arizono, M., Nägerl, U. V., Soula, H., & Berry, H. (2019). Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLoS Computational Biology, 15, e1006795.
CAS PubMed PubMed Central Google Scholar
Douglas, R. D., Araque, A., Johanson-Berg, H., Lim, S.-S., Lynch, G., Nave, K.-A., Nedergaard, M., Perez, R., Sejnowski, T., & Wake, H. (2013). Glial Biology in Learning and Cognition. The Neuroscientist, 20, 426–431. https://doi.org/10.1177/10738584135044
Dunbier, J. R., Wiederman, S. D., Shoemaker, P. A., & O’Carroll, D. C. (2012). Facilitation of dragonfly target detectors by slow moving features on continuous paths. Frontiers in Neural Circuits, 6, 79. https://doi.org/10.3389/fncir.2012.00079
Article PubMed PubMed Central Google Scholar
Edenfeld, G., Stork, T., & Klämbt, C. (2005). Neuron-glia interaction in the insect nervous system. Current Opinion in Neurobiology, 15, 34–39. https://doi.org/10.1016/j.conb.2005.01.007
Article CAS PubMed Google Scholar
Elwess, N. L., Filoteo, A. G., Enyedi, A., & Penniston, J. T. (1997). Plasma membrane Ca2+ pump isoforms 2a and 2b are unusually responsive to calmodulin and Ca2+. Journal of Biological Chemistry, 272, 17981–17986. https://doi.org/10.1074/jbc.272.29.17981
Article CAS PubMed Google Scholar
Enyedi, A., Flura, M., Sarkadi, B., Gardos, G., & Carafoli, E. (1987). The maximal velocity and the calcium affinity of the red cell calcium pump may be regulated independently. Journal of Biological Chemistry, 262, 6425–6430.
Fabian, J. R., Dunbier, J. M., O’Carroll, D. C., & Wiederman, S. D. (2019). Properties of predictive gain modulation in a dragonfly visual neuron. Journal of Experimental Biology, 222, jeb207316. https://doi.org/10.1242/jeb.207316
Comments (0)