In Proteobacteria, the outer membrane protein TamA and the inner membrane-anchored protein TamB form the Translocation and Assembly Module (TAM) complex, which facilitates the transport of autotransporters, virulence factors, and likely lipids across the two membranes. In Bacteroidota, TamA is replaced by TamL, a TamA-like lipoprotein with a lipid modification at its N-terminus that likely anchors it to the outer membrane. This structural difference suggests that TamL may have a distinct function compared to TamA. However, the role of TAM in bacterial phyla other than Proteobacteria remains unexplored.
Our study aimed to elucidate the function of TamL in Flavobacterium johnsoniae, an environmental Bacteroidota. Unlike its homologs in Proteobacteria, we found that TamL and TamB are essential in F. johnsoniae. Through genetic, phenotypic, proteomic, and lipidomic analyses, we show that TamL depletion severely compromises outer membrane integrity, as evidenced by reduced cell viability, altered cell shape, increased susceptibility to membrane-disrupting agents, and elevated levels of outer membrane lipoproteins. Notably, we did not observe an overall decrease in the levels of β-barrel outer membrane proteins, nor substantial alterations in outer membrane lipid composition.
By pull-down assays, we found TamL co-purifying with TamB in F. johnsoniae, suggesting an interaction. Furthermore, we found that while TamL and TamB monocistronic genes are conserved among Bacteroidota, only some species encode multiple TamL, TamB and TamA proteins.
To our knowledge, this study is the first to provide functional insights into a TAM subunit beyond Proteobacteria.
Comments (0)