Differences in Body Composition, Bone Density, and Tibial Microarchitecture in Division I Female Athletes Participating in Different Impact Loading Sports

Koltun KJ et al (2022) Tibial bone geometry is associated with bone stress injury during military training in men and women. Front Physiol 13:803219. https://doi.org/10.3389/fphys.2022.803219

Article  PubMed  PubMed Central  Google Scholar 

Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O’Malley CD (2014) Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos 9(1):182. https://doi.org/10.1007/s11657-014-0182-3

Article  CAS  PubMed  Google Scholar 

McCormack WP, Shoepe TC, LaBrie J, Almstedt HC (2019) Bone mineral density, energy availability, and dietary restraint in collegiate cross-country runners and non-running controls. Eur J Appl Physiol 119(8):1747–1756. https://doi.org/10.1007/s00421-019-04164-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schipilow JD, Macdonald HM, Liphardt AM, Kan M, Boyd SK (2013) Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: An HR-pQCT study. Bone 56(2):281–289. https://doi.org/10.1016/j.bone.2013.06.014

Article  CAS  PubMed  Google Scholar 

Nikander R, Kannus P, Rantalainen T, Uusi-Rasi K, Heinonen A, Sievänen H (2010) Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int 21(10):1687–1694. https://doi.org/10.1007/s00198-009-1101-0

Article  CAS  PubMed  Google Scholar 

Greene DA, Naughton GA, Bradshaw E, Moresi M, Ducher G (2012) Mechanical loading with or without weight-bearing activity: influence on bone strength index in elite female adolescent athletes engaged in water polo, gymnastics, and track-and-field. J Bone Miner Metab 30(5):580–587. https://doi.org/10.1007/s00774-012-0360-6

Article  PubMed  Google Scholar 

Frost HM (2003) Bone’s mechanostat: A 2003 update. Anat Rec 275A(2):1081–1101. https://doi.org/10.1002/ar.a.10119

Article  Google Scholar 

J. Wolff, The Law of Bone Remodelling. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. Accessed: Feb. 23, 2022. [Online]. Available: https://doi.org/10.1007/978-3-642-71031-5

Hughes JM, Popp KL, Yanovich R, Bouxsein ML, Matheny RW (2017) The role of adaptive bone formation in the etiology of stress fracture. Exp Biol Med (Maywood) 242(9):897–906. https://doi.org/10.1177/1535370216661646

Article  CAS  PubMed  Google Scholar 

Turner CH, Robling AG (2003) Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 31(1):45–50. https://doi.org/10.1097/00003677-200301000-00009

Article  PubMed  Google Scholar 

Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407. https://doi.org/10.1016/S8756-3282(98)00118-5

Article  CAS  PubMed  Google Scholar 

Hert J, Lisková M, Landa J (1971) Reaction of bone to mechanical stimuli. 1. Continuous and intermittent loading of tibia in rabbit. Folia Morphol (Praha) 19(3):290–300

CAS  PubMed  Google Scholar 

Hughes JM, O’Leary TJ, Koltun KJ, Greeves JP (2022) Promoting adaptive bone formation to prevent stress fractures in military personnel. Eur J Sport Sci 22(1):4–15. https://doi.org/10.1080/17461391.2021.1949637

Article  PubMed  Google Scholar 

Bemben DA, Buchanan TD, Bemben MG, Knehans AW (2004) Influence of type of mechanical loading, menstrual status, and training season on bone density in young women athletes. J Strength Cond Res 18(2):220–226. https://doi.org/10.1519/R-12652.1

Article  PubMed  Google Scholar 

Nikander R, Sievänen H, Heinonen A, Kannus P (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Mineral Res 20(3):520–528. https://doi.org/10.1359/JBMR.041119

Article  Google Scholar 

Warden SJ, Sventeckis AM, Surowiec RK, Fuchs RK (2022) Enhanced bone size, microarchitecture, and strength in female runners with a history of playing multidirectional sports. Med Sci Sports Exerc 54(12):2020–2030. https://doi.org/10.1249/MSS.0000000000003016

Article  PubMed  PubMed Central  Google Scholar 

Rizzone KH, Ackerman KE, Roos KG, Dompier TP, Kerr ZY (2017) The epidemiology of stress fractures in collegiate student-athletes, 2004–2005 through 2013–2014 academic years. J Athl Train 52(10):966–975. https://doi.org/10.4085/1062-6050-52.8.01

Article  PubMed  PubMed Central  Google Scholar 

Zabriskie HA, Currier BS, Harty PS, Stecker RA, Jagim AR, Kerksick CM (2019) Energy status and body composition across a collegiate women’s lacrosse season. Nutrients 11(2):470. https://doi.org/10.3390/nu11020470

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tenforde AS et al (2017) Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med 45(2):302–310. https://doi.org/10.1177/0363546516676262

Article  PubMed  Google Scholar 

Dobrosielski DA, Leppert KM, Knuth ND, Wilder JN, Kovacs L, Lisman PJ (2021) Body composition values of NCAA division 1 female athletes derived from dual-energy X-Ray absorptiometry. J Strength Cond Res 35(10):2886–2893. https://doi.org/10.1519/JSC.0000000000003213

Article  PubMed  Google Scholar 

Matijevich ES, Branscombe LM, Scott LR, Zelik KE (2019) Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech. PLoS ONE 14(1):e0210000. https://doi.org/10.1371/journal.pone.0210000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamrick MW (2012) The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. Bonekey Rep 1:60. https://doi.org/10.1038/bonekey.2012.60

Article  PubMed  PubMed Central  Google Scholar 

Warden SJ, Edwards WB, Willy RW (2021) Preventing bone stress injuries in runners with optimal workload. Curr Osteoporos Rep 19(3):298–307. https://doi.org/10.1007/s11914-021-00666-y

Article  PubMed  PubMed Central  Google Scholar 

Pomeroy E, Macintosh A, Wells JCK, Cole TJ, Stock JT (2018) Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: Implications for estimating body mass and physique from the skeleton. Am J Phys Anthropol 166(1):56–69. https://doi.org/10.1002/ajpa.23398

Article  PubMed  PubMed Central  Google Scholar 

“ACOG Committee Opinion No. 651: Menstruation in Girls and Adolescents: Using the Menstrual Cycle as a Vital Sign,” Obstet Gynecol, 2015, https://doi.org/10.1097/AOG.0000000000001215.

Yang YJ, Martin BR, Boushey CJ (2010) Development and evaluation of a brief calcium assessment tool for adolescents. J Am Diet Assoc 110(1):111–115. https://doi.org/10.1016/j.jada.2009.10.009

Article  CAS  PubMed  Google Scholar 

Whittier DE et al (2020) Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 31(9):1607–1627. https://doi.org/10.1007/s00198-020-05438-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA (2011) Bone mineral accrual from 8 to 30 years of age: An estimation of peak bone mass. J Bone Miner Res 26(8):1729–1739. https://doi.org/10.1002/jbmr.412

Article  PubMed  Google Scholar 

Kalkwarf HJ, Laor T, Bean JA (2011) Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporos Int 22(2):607–616. https://doi.org/10.1007/s00198-010-1333-z

Article  CAS  PubMed  Google Scholar 

Taaffe DR, Robinson TL, Snow CM, Marcus R (1997) High-impact exercise promotes bone gain in well-trained female athletes. J Bone Miner Res 12(2):255–260. https://doi.org/10.1359/jbmr.1997.12.2.255

Article  CAS  PubMed 

Comments (0)

No login
gif