The Relationship Between the Heterogeneity of Lumbar Vertebral Trabecular Bone Mineral Density Distribution and Osteoporotic Vertebral Fractures

Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4(6):368–381

Article  PubMed  CAS  Google Scholar 

Kanis JA et al (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30(1):3–44

Article  PubMed  CAS  Google Scholar 

Cheng X et al (2020) Chinese expert consensus on the diagnosis of osteoporosis by imaging and bone mineral density. Quant Imaging Med Surg 10(10):2066–2077

Article  PubMed  PubMed Central  Google Scholar 

Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (CDC) (2024). https://ncncd.chinacdc.cn/zxdt/201810/t20181020_195265.htm.

Conley RB et al (2020) Secondary fracture prevention: consensus clinical recommendations from a multistakeholder coalition. J Bone Miner Res 35(1):36–52

Article  PubMed  Google Scholar 

Si L et al (2015) Projection of osteoporosis-related fractures and costs in China: 2010–2050. Osteoporos Int 26(7):1929–1937

Article  PubMed  CAS  Google Scholar 

Wang L et al (2021) Prevalence of osteoporosis and fracture in china: the China Osteoporosis Prevalence Study. JAMA Netw Open 4(8):e2121106

Article  PubMed  PubMed Central  Google Scholar 

Yu F, Xia W (2019) The epidemiology of osteoporosis, associated fragility fractures, and management gap in China. Arch Osteoporos 14(1):32

Article  PubMed  Google Scholar 

Baim S et al (2008) Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom 11(1):75–91

Article  PubMed  Google Scholar 

Watts NB (2004) Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int 15(11):847–854

Article  PubMed  Google Scholar 

Bruno AG et al (2014) Vertebral size, bone density, and strength in men and women matched for age and areal spine BMD. J Bone Miner Res 29(3):562–569

Article  PubMed  Google Scholar 

Xu XM et al (2019) Discordance in diagnosis of osteoporosis by quantitative computed tomography and dual-energy X-ray absorptiometry in Chinese elderly men. J Orthop Translat 18:59–64

Article  PubMed  Google Scholar 

Genant HK et al (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97(5):699–705

Article  PubMed  CAS  Google Scholar 

Engelke K et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom 11(1):123–162

Article  PubMed  Google Scholar 

Buckley JM, Loo K, Motherway J (2007) Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40(3):767–774

Article  PubMed  Google Scholar 

Imai K et al (2009) Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int 20(5):801–810

Article  PubMed  CAS  Google Scholar 

Melton LR et al (2010) Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res 25(9):1922–1930

Article  PubMed  PubMed Central  Google Scholar 

Cranney A et al (2007) Low bone mineral density and fracture burden in postmenopausal women. CMAJ 177(6):575–580

Article  PubMed  PubMed Central  Google Scholar 

Sandor T et al (1991) Global and regional variations in the spinal trabecular bone: single and dual energy examinations. J Clin Endocrinol Metab 72(5):1157–1168

Article  PubMed  CAS  Google Scholar 

Gong H et al (2005) Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 23(2):174–180

Article  PubMed  Google Scholar 

Cody DD et al (1991) Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load. Spine (Phila Pa 1976) 16(2):146–154

Article  PubMed  CAS  Google Scholar 

Kaiser J et al (2018) Correspondence between bone mineral density and intervertebral disc degeneration across age and sex. Arch Osteoporos 13(1):123

Article  PubMed  PubMed Central  Google Scholar 

Cvijanovic O et al (2004) Age- and region-dependent changes in human lumbar vertebral bone: a histomorphometric study. Spine (Phila Pa 1976) 29(21):2370–2375

Article  PubMed  Google Scholar 

Hussein AI et al (2013) The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength. Osteoporos Int 24(12):3021–3030

Article  PubMed  PubMed Central  CAS  Google Scholar 

Giambini H et al (2013) Longitudinal changes in lumbar bone mineral density distribution may increase the risk of wedge fractures. Clin Biomech (Bristol, Avon) 28(1):10–14

Article  Google Scholar 

Wang Y et al (2013) Regional variations in trabecular architecture of the lumbar vertebra: associations with age, disc degeneration and disc space narrowing. Bone 56(2):249–254

Article  PubMed  Google Scholar 

Auger JD et al (2020) Trabecular architecture and mechanical heterogeneity effects on vertebral body strength. Curr Osteoporos Rep 18(6):716–726

Article  PubMed  PubMed Central  Google Scholar 

Sprecher CM et al (2015) Histomorphometric assessment of cancellous and cortical bone material distribution in the proximal humerus of normal and osteoporotic individuals: significantly reduced bone stock in the metaphyseal and subcapital regions of osteoporotic individuals. Medicine (Baltimore) 94(51):e2043

Article  PubMed  Google Scholar 

Hussein AI, Morgan EF (2013) The effect of intravertebral heterogeneity in microstructure on vertebral strength and failure patterns. Osteoporos Int 24(3):979–989

Article  PubMed  CAS  Google Scholar 

Kaiser J et al (2020) Heterogeneity and spatial distribution of intravertebral trabecular bone mineral density in the lumbar spine is associated with prevalent vertebral fracture. J Bone Miner Res 35(4):641–648

Article  PubMed  CAS  Google Scholar 

Genant HK et al (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148

Article  PubMed  CAS  Google Scholar 

Samelson EJ et al (2012) QCT measures of bone strength at the thoracic and lumbar spine: the Framingham Study. J Bone Miner Res 27(3):654–663

Article  PubMed  Google Scholar 

Che-Nordin N et al (2018) Prevalent osteoporotic vertebral fractures more likely involve the upper endplate than the lower endplate and even more so in males. Ann Transl Med 6(22):442

Article  PubMed  PubMed Central  Google Scholar 

Kim DG et al (2007) The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies. Ann Biomed Eng 35(11):1907–1913

Article  PubMed  Google Scholar 

Oftadeh R et al (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137(1):0108021–01080215

Comments (0)

No login
gif