Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4(6):368–381
Article PubMed CAS Google Scholar
Kanis JA et al (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30(1):3–44
Article PubMed CAS Google Scholar
Cheng X et al (2020) Chinese expert consensus on the diagnosis of osteoporosis by imaging and bone mineral density. Quant Imaging Med Surg 10(10):2066–2077
Article PubMed PubMed Central Google Scholar
Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (CDC) (2024). https://ncncd.chinacdc.cn/zxdt/201810/t20181020_195265.htm.
Conley RB et al (2020) Secondary fracture prevention: consensus clinical recommendations from a multistakeholder coalition. J Bone Miner Res 35(1):36–52
Si L et al (2015) Projection of osteoporosis-related fractures and costs in China: 2010–2050. Osteoporos Int 26(7):1929–1937
Article PubMed CAS Google Scholar
Wang L et al (2021) Prevalence of osteoporosis and fracture in china: the China Osteoporosis Prevalence Study. JAMA Netw Open 4(8):e2121106
Article PubMed PubMed Central Google Scholar
Yu F, Xia W (2019) The epidemiology of osteoporosis, associated fragility fractures, and management gap in China. Arch Osteoporos 14(1):32
Baim S et al (2008) Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom 11(1):75–91
Watts NB (2004) Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int 15(11):847–854
Bruno AG et al (2014) Vertebral size, bone density, and strength in men and women matched for age and areal spine BMD. J Bone Miner Res 29(3):562–569
Xu XM et al (2019) Discordance in diagnosis of osteoporosis by quantitative computed tomography and dual-energy X-ray absorptiometry in Chinese elderly men. J Orthop Translat 18:59–64
Genant HK et al (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97(5):699–705
Article PubMed CAS Google Scholar
Engelke K et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom 11(1):123–162
Buckley JM, Loo K, Motherway J (2007) Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40(3):767–774
Imai K et al (2009) Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int 20(5):801–810
Article PubMed CAS Google Scholar
Melton LR et al (2010) Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res 25(9):1922–1930
Article PubMed PubMed Central Google Scholar
Cranney A et al (2007) Low bone mineral density and fracture burden in postmenopausal women. CMAJ 177(6):575–580
Article PubMed PubMed Central Google Scholar
Sandor T et al (1991) Global and regional variations in the spinal trabecular bone: single and dual energy examinations. J Clin Endocrinol Metab 72(5):1157–1168
Article PubMed CAS Google Scholar
Gong H et al (2005) Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 23(2):174–180
Cody DD et al (1991) Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load. Spine (Phila Pa 1976) 16(2):146–154
Article PubMed CAS Google Scholar
Kaiser J et al (2018) Correspondence between bone mineral density and intervertebral disc degeneration across age and sex. Arch Osteoporos 13(1):123
Article PubMed PubMed Central Google Scholar
Cvijanovic O et al (2004) Age- and region-dependent changes in human lumbar vertebral bone: a histomorphometric study. Spine (Phila Pa 1976) 29(21):2370–2375
Hussein AI et al (2013) The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength. Osteoporos Int 24(12):3021–3030
Article PubMed PubMed Central CAS Google Scholar
Giambini H et al (2013) Longitudinal changes in lumbar bone mineral density distribution may increase the risk of wedge fractures. Clin Biomech (Bristol, Avon) 28(1):10–14
Wang Y et al (2013) Regional variations in trabecular architecture of the lumbar vertebra: associations with age, disc degeneration and disc space narrowing. Bone 56(2):249–254
Auger JD et al (2020) Trabecular architecture and mechanical heterogeneity effects on vertebral body strength. Curr Osteoporos Rep 18(6):716–726
Article PubMed PubMed Central Google Scholar
Sprecher CM et al (2015) Histomorphometric assessment of cancellous and cortical bone material distribution in the proximal humerus of normal and osteoporotic individuals: significantly reduced bone stock in the metaphyseal and subcapital regions of osteoporotic individuals. Medicine (Baltimore) 94(51):e2043
Hussein AI, Morgan EF (2013) The effect of intravertebral heterogeneity in microstructure on vertebral strength and failure patterns. Osteoporos Int 24(3):979–989
Article PubMed CAS Google Scholar
Kaiser J et al (2020) Heterogeneity and spatial distribution of intravertebral trabecular bone mineral density in the lumbar spine is associated with prevalent vertebral fracture. J Bone Miner Res 35(4):641–648
Article PubMed CAS Google Scholar
Genant HK et al (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148
Article PubMed CAS Google Scholar
Samelson EJ et al (2012) QCT measures of bone strength at the thoracic and lumbar spine: the Framingham Study. J Bone Miner Res 27(3):654–663
Che-Nordin N et al (2018) Prevalent osteoporotic vertebral fractures more likely involve the upper endplate than the lower endplate and even more so in males. Ann Transl Med 6(22):442
Article PubMed PubMed Central Google Scholar
Kim DG et al (2007) The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies. Ann Biomed Eng 35(11):1907–1913
Oftadeh R et al (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137(1):0108021–01080215
Comments (0)