Huang C et al (2021) Hepatocyte growth factor overexpression promotes osteoclastogenesis and exacerbates bone loss in CIA mice. J Orthop Translat 27:9–16
Zhang W et al (2022) Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J Orthop Translat 33:41–54
Article PubMed PubMed Central Google Scholar
Guo YF et al (2021) The role of autophagy in bone homeostasis. J Cell Physiol 236(6):4152–4173
Article CAS PubMed Google Scholar
Lane NE (2019) Glucocorticoid-induced osteoporosis: new insights into the pathophysiology and treatments. Curr Osteoporos Rep 17(1):1–7
Article PubMed PubMed Central Google Scholar
Adami G, Saag KG (2019) Glucocorticoid-induced osteoporosis update. Curr Opin Rheumatol 31(4):388–393
Article CAS PubMed Google Scholar
Liu Z et al (2020) Efficacy and safety of 18 anti-osteoporotic drugs in the treatment of patients with osteoporosis caused by glucocorticoid: a network meta-analysis of randomized controlled trials. PLoS ONE 15(12):e0243851
Article CAS PubMed PubMed Central Google Scholar
Wang H et al (2020) Friend or Foe? Essential roles of osteoclast in maintaining skeletal health. Biomed Res Int 2020:4791786
Article PubMed PubMed Central Google Scholar
Novack DV, Teitelbaum SL (2008) The osteoclast: friend or foe? Annu Rev Pathol 3:457–484
Article CAS PubMed Google Scholar
Chen X et al (2018) Osteoblast-osteoclast interactions. Connect Tissue Res 59(2):99–107
Article CAS PubMed Google Scholar
Udagawa N et al (2021) Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 39(1):19–26
Article CAS PubMed Google Scholar
Sezer O et al (2003) RANK ligand and osteoprotegerin in myeloma bone disease. Blood 101(6):2094–2098
Article CAS PubMed Google Scholar
Wada T et al (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12(1):17–25
Article CAS PubMed Google Scholar
Yang X, Karsenty G (2002) Transcription factors in bone: developmental and pathological aspects. Trends Mol Med 8(7):340–345
Article CAS PubMed Google Scholar
Li CQ, He LC, Jin JQ (2007) Atractylenolide I and atractylenolide III inhibit Lipopolysaccharide-induced TNF-alpha and NO production in macrophages. Phytother Res 21(4):347–353
Article CAS PubMed Google Scholar
Du Z et al (2022) Atractylenolide I ameliorates acetaminophen-induced acute liver injury via the TLR4/MAPKs/NF-kappaB signaling pathways. Front Pharmacol 13:797499
Article CAS PubMed PubMed Central Google Scholar
Wang M et al (2021) Atractylenolide-I sensitizes triple-negative breast cancer cells to paclitaxel by blocking CTGF expression and fibroblast activation. Front Oncol 11:738534
Article CAS PubMed PubMed Central Google Scholar
Jeong YH et al (2019) Atractylodis rhizoma alba attenuates neuroinflammation in BV2 microglia upon LPS stimulation by inducing HO-1 activity and inhibiting NF-kappaB and MAPK. Int J Mol Sci 20(16):4015
Article CAS PubMed PubMed Central Google Scholar
Amin A et al (2022) Inhibition of the Akt/NF-kappaB pathway is involved in the anti-gastritis effects of an ethanolic extract of the rhizome of Atractylodes macrocephala. J Ethnopharmacol 293:115251
Article CAS PubMed Google Scholar
More S, Choi DK (2017) Neuroprotective role of Atractylenolide-I in an in vitro and in vivo model of parkinson’s disease. Nutrients 9(5):451
Article PubMed PubMed Central Google Scholar
Liu H et al (2016) Atractylenolide I modulates ovarian cancer cell-mediated immunosuppression by blocking MD-2/TLR4 complex-mediated MyD88/NF-kappaB signaling in vitro. J Transl Med 14(1):104
Article PubMed PubMed Central Google Scholar
Long F et al (2020) Atractylenolide-I suppresses tumorigenesis of breast cancer by inhibiting toll-like receptor 4-mediated nuclear factor-kappaB signaling pathway. Front Pharmacol 11:598939
Article CAS PubMed PubMed Central Google Scholar
Ha H et al (2013) Ethanol extract of Atractylodes macrocephala protects bone loss by inhibiting osteoclast differentiation. Molecules 18(7):7376–7388
Article CAS PubMed PubMed Central Google Scholar
Deng W et al (2022) Dehydromiltirone inhibits osteoclast differentiation in RAW264.7 and bone marrow macrophages by modulating MAPK and NF-κB activity. Front Pharmacol. https://doi.org/10.3389/fphar.2022.1015693
Article PubMed PubMed Central Google Scholar
Moriishi T et al (2020) Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet 16(5):e1008586
Article CAS PubMed PubMed Central Google Scholar
Whittier X, Saag KG (2016) Glucocorticoid-induced osteoporosis. Rheum Dis Clin North Am 42(1):177–189
Compston J (2018) Glucocorticoid-induced osteoporosis: an update. Endocrine 61(1):7–16
Article CAS PubMed PubMed Central Google Scholar
Liu Y et al (2020) Maackiain dampens osteoclastogenesis via attenuating RANKL-stimulated NF-kappaB signalling pathway and NFATc1 activity. J Cell Mol Med 24(21):12308–12317
Article CAS PubMed PubMed Central Google Scholar
Li Y et al (2021) Carnosol suppresses RANKL-induced osteoclastogenesis and attenuates titanium particles-induced osteolysis. J Cell Physiol 236(3):1950–1966
Article CAS PubMed Google Scholar
Lu J et al (2020) Corilagin suppresses RANKL-induced osteoclastogenesis and inhibits oestrogen deficiency-induced bone loss via the NF-kappaB and PI3K/AKT signalling pathways. J Cell Mol Med 24(18):10444–10457
Article CAS PubMed PubMed Central Google Scholar
Yu H et al (2023) Potential targets and pharmacological effects of Wuling capsule on Alzheimer’s disease: a network pharmacology-based analysis. Future Integr Med 2(1):10–22
Feng X, Teitelbaum SL (2013) Osteoclasts: new insights. Bone Res 1(1):11–26
Boyce BF (2013) Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts. J Bone Miner Res 28(4):711–722
Comments (0)