Kumar AV, Mills J, Lapierre LR (2022) Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front Cell Dev Biol 10:793328. https://doi.org/10.3389/fcell.2022.793328
Article PubMed PubMed Central Google Scholar
Chen Y, Li Q, Li Q, Xing S, Liu Y, Liu Y, Chen Y et al (2020) p62/SQSTM1, a central but unexploited target: advances in its physiological/pathogenic functions and small molecular modulators. J Med Chem 63(18):10135–10157. https://doi.org/10.1021/acs.jmedchem.9b02038
Article CAS PubMed Google Scholar
Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584(7):1374–1378. https://doi.org/10.1016/j.febslet.2010.02.017
Article CAS PubMed Google Scholar
Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J (2013) New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget’s disease of bone. Endocr Rev 34(4):501–524. https://doi.org/10.1210/er.2012-1034
Article CAS PubMed Google Scholar
Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, Searle MS et al (2006) Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int 78(5):271–277. https://doi.org/10.1007/s00223-005-1299-6
Article CAS PubMed Google Scholar
Gennari L, Rendina D, Merlotti D, Cavati G, Mingiano C, Cosso R, Materozzi M et al (2022) Update on the pathogenesis and genetics of Paget’s disease of bone. Front Cell Dev Biol 10:932065. https://doi.org/10.3389/fcell.2022.932065
Article PubMed PubMed Central Google Scholar
Makaram NS, Ralston SH (2021) Genetic determinants of Paget’s disease of bone. Curr Osteoporos Rep 19(3):327–337. https://doi.org/10.1007/s11914-021-00676-w
Article PubMed PubMed Central Google Scholar
Ralston SH (2013) Clinical practice. Paget’s disease of bone. N Engl J Med 368(7):644–650. https://doi.org/10.1056/NEJMcp1204713
Article CAS PubMed Google Scholar
Alonso N, Calero-Paniagua I, Del Pino-Montes J (2017) Clinical and genetic advances in Paget’s disease of bone: a review. Clin Rev Bone Miner Metab 15(1):37–48. https://doi.org/10.1007/s12018-016-9226-0
Article CAS PubMed Google Scholar
Ralston SH, Corral-Gudino L, Cooper C, Francis RM, Fraser WD, Gennari L, Guañabens N et al (2019) Diagnosis and management of Paget’s disease of bone in adults: a clinical guideline. J Bone Miner Res 34(4):579–604. https://doi.org/10.1002/jbmr.3657
Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A et al (2008) Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 118(5):1858–1866. https://doi.org/10.1172/jci34257
Article CAS PubMed PubMed Central Google Scholar
Usategui-Martín R, Gestoso-Uzal N, Calero-Paniagua I, De Pereda JM, Del Pino-Montes J, González-Sarmiento R (2020) A mutation in p62 protein (p. R321C), associated to Paget’s disease of bone, causes a blockade of autophagy and an activation of NF-kB pathway. Bone 133:115265. https://doi.org/10.1016/j.bone.2020.115265
Article CAS PubMed Google Scholar
Durán A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J et al (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6(2):303–309. https://doi.org/10.1016/s1534-5807(03)00403-9
Zach F, Polzer F, Mueller A, Gessner A (2018) p62/sequestosome 1 deficiency accelerates osteoclastogenesis in vitro and leads to Paget’s disease-like bone phenotypes in mice. J Biol Chem 293(24):9530–9541. https://doi.org/10.1074/jbc.RA118.002449
Article CAS PubMed PubMed Central Google Scholar
Daroszewska A, van ’t Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L, Rose K et al (2011) A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget’s disease-like disorder in mice. Hum Mol Genet 20(14):2734–2744. https://doi.org/10.1093/hmg/ddr172
Article CAS PubMed Google Scholar
Daroszewska A, Rose L, Sarsam N, Charlesworth G, Prior A, Rose K, Ralston SH et al (2018) Zoledronic acid prevents pagetic-like lesions and accelerated bone loss in the p62(P394L) mouse model of Paget’s disease. Dis Model Mech. https://doi.org/10.1242/dmm.035576
Article PubMed PubMed Central Google Scholar
Witten PE, Huysseune A (2009) A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 84(2):315–346. https://doi.org/10.1111/j.1469-185X.2009.00077.x
Silva IAL, Conceição N, Michou L, Cancela ML (2014) Can zebrafish be a valid model to study Paget’s disease of bone? J Appl Ichthyol 30(4):678–688. https://doi.org/10.1111/jai.12523
Vergauwen L, Cavallin JE, Ankley GT, Bars C, Gabriëls IJ, Michiels EDG, Fitzpatrick KR et al (2018) Gene transcription ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage fathead minnow and zebrafish. Gen Comp Endocrinol 266:87–100. https://doi.org/10.1016/j.ygcen.2018.05.001
Article CAS PubMed PubMed Central Google Scholar
Carrington B, Varshney GK, Burgess SM, Sood R (2015) CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Res 43(22):e157. https://doi.org/10.1093/nar/gkv802
Article CAS PubMed PubMed Central Google Scholar
Lambert CJ, Freshner BC, Chung A, Stevenson TJ, Bowles DM, Samuel R, Gale BK et al (2018) An automated system for rapid cellular extraction from live zebrafish embryos and larvae: development and application to genotyping. PLoS ONE 13(3):e0193180. https://doi.org/10.1371/journal.pone.0193180
Article CAS PubMed PubMed Central Google Scholar
Samber B, Renders J, Elberfeld T, Maris Y, Sanctorum J, Six N, Liang Z et al (2021) FleXCT: a flexible X-ray CT scanner with 10 degrees of freedom. Opt Express 29(3):3438–3457. https://doi.org/10.1364/oe.409982
Article CAS PubMed Google Scholar
Hur M, Gistelinck CA, Huber P, Lee J, Thompson MH, Monstad-Rios AT, Watson CJ et al (2017) MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system. Elife. https://doi.org/10.7554/eLife.26014
Article PubMed PubMed Central Google Scholar
Bergen DJM, Tong Q, Shukla A, Newham E, Zethof J, Lundberg M, Ryan R et al (2022) Regenerating zebrafish scales express a subset of evolutionary conserved genes involved in human skeletal disease. BMC Biol 20(1):21. https://doi.org/10.1186/s12915-021-01209-8
Article CAS PubMed PubMed Central Google Scholar
Ethiraj LP, Fong ELS, Liu R, Chan M, Winkler C, Carney TJ (2022) Colorimetric and fluorescent TRAP assays for visualising and quantifying fish osteoclast activity. Eur J Histochem. https://doi.org/10.4081/ejh.2022.3369
Article PubMed PubMed Central Google Scholar
Tarasco M, Cordelières FP, Cancela ML, Laizé V (2020) ZFBONE: an image J toolset for semi-automatic analysis of zebrafish bone structures. Bone 138:115480. https://doi.org/10.1016/j.bone.2020.115480
Article CAS PubMed Google Scholar
Martini A, Sahd L, Rücklin M, Huysseune A, Hall BK, Boglione C, Witten PE (2023) Deformity or variation? Phenotypic diversity in the zebrafish vertebral column. J Anat 243(6):960–981. https://doi.org/10.1111/joa.13926
Comments (0)