Loss of the Ubiquitin-Associated Domain of /p62 in Zebrafish Causes a Phenotype Resembling Paget’s Disease of Bone

Kumar AV, Mills J, Lapierre LR (2022) Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front Cell Dev Biol 10:793328. https://doi.org/10.3389/fcell.2022.793328

Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Li Q, Li Q, Xing S, Liu Y, Liu Y, Chen Y et al (2020) p62/SQSTM1, a central but unexploited target: advances in its physiological/pathogenic functions and small molecular modulators. J Med Chem 63(18):10135–10157. https://doi.org/10.1021/acs.jmedchem.9b02038

Article  CAS  PubMed  Google Scholar 

Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584(7):1374–1378. https://doi.org/10.1016/j.febslet.2010.02.017

Article  CAS  PubMed  Google Scholar 

Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J (2013) New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget’s disease of bone. Endocr Rev 34(4):501–524. https://doi.org/10.1210/er.2012-1034

Article  CAS  PubMed  Google Scholar 

Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, Searle MS et al (2006) Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int 78(5):271–277. https://doi.org/10.1007/s00223-005-1299-6

Article  CAS  PubMed  Google Scholar 

Gennari L, Rendina D, Merlotti D, Cavati G, Mingiano C, Cosso R, Materozzi M et al (2022) Update on the pathogenesis and genetics of Paget’s disease of bone. Front Cell Dev Biol 10:932065. https://doi.org/10.3389/fcell.2022.932065

Article  PubMed  PubMed Central  Google Scholar 

Makaram NS, Ralston SH (2021) Genetic determinants of Paget’s disease of bone. Curr Osteoporos Rep 19(3):327–337. https://doi.org/10.1007/s11914-021-00676-w

Article  PubMed  PubMed Central  Google Scholar 

Ralston SH (2013) Clinical practice. Paget’s disease of bone. N Engl J Med 368(7):644–650. https://doi.org/10.1056/NEJMcp1204713

Article  CAS  PubMed  Google Scholar 

Alonso N, Calero-Paniagua I, Del Pino-Montes J (2017) Clinical and genetic advances in Paget’s disease of bone: a review. Clin Rev Bone Miner Metab 15(1):37–48. https://doi.org/10.1007/s12018-016-9226-0

Article  CAS  PubMed  Google Scholar 

Ralston SH, Corral-Gudino L, Cooper C, Francis RM, Fraser WD, Gennari L, Guañabens N et al (2019) Diagnosis and management of Paget’s disease of bone in adults: a clinical guideline. J Bone Miner Res 34(4):579–604. https://doi.org/10.1002/jbmr.3657

Article  PubMed  Google Scholar 

Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A et al (2008) Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 118(5):1858–1866. https://doi.org/10.1172/jci34257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Usategui-Martín R, Gestoso-Uzal N, Calero-Paniagua I, De Pereda JM, Del Pino-Montes J, González-Sarmiento R (2020) A mutation in p62 protein (p. R321C), associated to Paget’s disease of bone, causes a blockade of autophagy and an activation of NF-kB pathway. Bone 133:115265. https://doi.org/10.1016/j.bone.2020.115265

Article  CAS  PubMed  Google Scholar 

Durán A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J et al (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6(2):303–309. https://doi.org/10.1016/s1534-5807(03)00403-9

Article  PubMed  Google Scholar 

Zach F, Polzer F, Mueller A, Gessner A (2018) p62/sequestosome 1 deficiency accelerates osteoclastogenesis in vitro and leads to Paget’s disease-like bone phenotypes in mice. J Biol Chem 293(24):9530–9541. https://doi.org/10.1074/jbc.RA118.002449

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daroszewska A, van ’t Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L, Rose K et al (2011) A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget’s disease-like disorder in mice. Hum Mol Genet 20(14):2734–2744. https://doi.org/10.1093/hmg/ddr172

Article  CAS  PubMed  Google Scholar 

Daroszewska A, Rose L, Sarsam N, Charlesworth G, Prior A, Rose K, Ralston SH et al (2018) Zoledronic acid prevents pagetic-like lesions and accelerated bone loss in the p62(P394L) mouse model of Paget’s disease. Dis Model Mech. https://doi.org/10.1242/dmm.035576

Article  PubMed  PubMed Central  Google Scholar 

Witten PE, Huysseune A (2009) A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 84(2):315–346. https://doi.org/10.1111/j.1469-185X.2009.00077.x

Article  PubMed  Google Scholar 

Silva IAL, Conceição N, Michou L, Cancela ML (2014) Can zebrafish be a valid model to study Paget’s disease of bone? J Appl Ichthyol 30(4):678–688. https://doi.org/10.1111/jai.12523

Article  CAS  Google Scholar 

Vergauwen L, Cavallin JE, Ankley GT, Bars C, Gabriëls IJ, Michiels EDG, Fitzpatrick KR et al (2018) Gene transcription ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage fathead minnow and zebrafish. Gen Comp Endocrinol 266:87–100. https://doi.org/10.1016/j.ygcen.2018.05.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carrington B, Varshney GK, Burgess SM, Sood R (2015) CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Res 43(22):e157. https://doi.org/10.1093/nar/gkv802

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lambert CJ, Freshner BC, Chung A, Stevenson TJ, Bowles DM, Samuel R, Gale BK et al (2018) An automated system for rapid cellular extraction from live zebrafish embryos and larvae: development and application to genotyping. PLoS ONE 13(3):e0193180. https://doi.org/10.1371/journal.pone.0193180

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samber B, Renders J, Elberfeld T, Maris Y, Sanctorum J, Six N, Liang Z et al (2021) FleXCT: a flexible X-ray CT scanner with 10 degrees of freedom. Opt Express 29(3):3438–3457. https://doi.org/10.1364/oe.409982

Article  CAS  PubMed  Google Scholar 

Hur M, Gistelinck CA, Huber P, Lee J, Thompson MH, Monstad-Rios AT, Watson CJ et al (2017) MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system. Elife. https://doi.org/10.7554/eLife.26014

Article  PubMed  PubMed Central  Google Scholar 

Bergen DJM, Tong Q, Shukla A, Newham E, Zethof J, Lundberg M, Ryan R et al (2022) Regenerating zebrafish scales express a subset of evolutionary conserved genes involved in human skeletal disease. BMC Biol 20(1):21. https://doi.org/10.1186/s12915-021-01209-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ethiraj LP, Fong ELS, Liu R, Chan M, Winkler C, Carney TJ (2022) Colorimetric and fluorescent TRAP assays for visualising and quantifying fish osteoclast activity. Eur J Histochem. https://doi.org/10.4081/ejh.2022.3369

Article  PubMed  PubMed Central  Google Scholar 

Tarasco M, Cordelières FP, Cancela ML, Laizé V (2020) ZFBONE: an image J toolset for semi-automatic analysis of zebrafish bone structures. Bone 138:115480. https://doi.org/10.1016/j.bone.2020.115480

Article  CAS  PubMed  Google Scholar 

Martini A, Sahd L, Rücklin M, Huysseune A, Hall BK, Boglione C, Witten PE (2023) Deformity or variation? Phenotypic diversity in the zebrafish vertebral column. J Anat 243(6):960–981. https://doi.org/10.1111/joa.13926

Article  PubMed 

Comments (0)

No login
gif