Based on the resting-state functional magnetic resonance imaging reveals the causal relationship between the brain function network and the risk of tinnitus: a bidirectional Mendelian randomization analysis

Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18, 177–185. https://doi.org/10.1016/j.tics.2013.12.003

Article  PubMed  Google Scholar 

Benjamini, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Article  Google Scholar 

Bowden, J., Davey Smith, G., & Burgess, S. (2015). Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. International Journal of Epidemiology, 44, 512–525. https://doi.org/10.1093/ije/dyv080

Article  PubMed  PubMed Central  Google Scholar 

Bowden, J., Davey Smith, G., Haycock, P. C., & Burgess, S. (2016). Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genetic Epidemiology, 40, 304–314. https://doi.org/10.1002/gepi.21965

Article  PubMed  PubMed Central  Google Scholar 

Bowden, J., Del Greco, M. F., Minelli, C., Zhao, Q., Lawlor, D. A., Sheehan, N. A., Thompson, J., & Davey Smith, G. (2019). Improving the accuracy of two-sample summary-data mendelian randomization: Moving beyond the NOME assumption. International Journal of Epidemiology, 48, 728–742. https://doi.org/10.1093/ije/dyy258

Article  PubMed  Google Scholar 

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. https://doi.org/10.1196/annals.1440.011

Article  PubMed  Google Scholar 

Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yan, J., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Patterson, N., Daly, M. J., Price, A. L., & Neale, B. M. (2015). LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 47, 291–295. https://doi.org/10.1038/ng.3211

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess, S., Thompson, S. G., & Genetics Collaboration, C. R. P. C. H. D. (2011). Avoiding bias from weak instruments in mendelian randomization studies. International Journal of Epidemiology, 40, 755–764. https://doi.org/10.1093/ije/dyr036

Article  PubMed  Google Scholar 

Burgess, S., Butterworth, A., & Thompson, S. G. (2013). Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology, 37, 658–665. https://doi.org/10.1002/gepi.21758

Article  PubMed  PubMed Central  Google Scholar 

Burgess, S., Scott, R. A., Timpson, N. J., Smith, G. D., Thompson, S. G., & Consortium, E. P. I. C. I. A. (2015). Using published data in mendelian randomization: A blueprint for efficient identification of causal risk factors. European Journal of Epidemiology, 30, 543–552. https://doi.org/10.1007/s10654-015-0011-z

Article  PubMed  PubMed Central  Google Scholar 

Chen, Y. C., Li, X., Liu, L., Wang, J., Lu, C. Q., Yang, M., Jiao, Y., Zang, F. C., Radziwon, K., Chen, G. D., Sun, W., Muthaiah, V. P. K., Salvi, R., & Teng, G. J. (2015). Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network. eLife, 4, e06576. https://doi.org/10.7554/eLife.06576

Article  PubMed  PubMed Central  Google Scholar 

Chen, Y. C., Feng, Y., Xu, J. J., Mao, C. N., Xia, W., Ren, J., & Yin, X. (2016). Disrupted brain functional network architecture in chronic tinnitus patients. Frontiers in Aging Neuroscience, 8, 174. https://doi.org/10.3389/fnagi.2016.00174

Article  PubMed  PubMed Central  Google Scholar 

Claeys, E. H. I., Mantingh, T., Morrens, M., Yalin, N., & Stokes, P. R. A. (2022). Resting-state fMRI in depressive and (hypo)manic mood states in bipolar disorders: A systematic review. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 113, 110465. https://doi.org/10.1016/j.pnpbp.2021.110465

Article  CAS  Google Scholar 

Darrous, L., Hemani, G., Davey Smith, G., & Kutalik, Z. (2024). PheWAS-based clustering of mendelian randomisation instruments reveals distinct mechanism-specific causal effects between obesity and educational attainment. Nature Communications, 15, 1420. https://doi.org/10.1038/s41467-024-45655-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Ridder, D., Vanneste, S., Weisz, N., Londero, A., Schlee, W., Elgoyhen, A. B., & Langguth, B. (2014). An integrative model of auditory phantom perception: Tinnitus as a unified percept of interacting separable subnetworks. Neuroscience and Biobehavioral Reviews, 44, 16–32. https://doi.org/10.1016/j.neubiorev.2013.03.021

Article  PubMed  Google Scholar 

Eggermont, J. J., & Roberts, L. E. (2004). The neuroscience of tinnitus. Trends in Neurosciences, 27, 676–682. https://doi.org/10.1016/j.tins.2004.08.010

Article  CAS  PubMed  Google Scholar 

Greco, F. D., Minelli, M. C., Sheehan, N. A., & Thompson, J. R. (2015). Detecting pleiotropy in mendelian randomisation studies with summary data and a continuous outcome. Statistics in Medicine, 34, 2926–2940. https://doi.org/10.1002/sim.6522

Article  Google Scholar 

Haider, H. F., Bojić, T., Ribeiro, S. F., Paço, J., Hall, D. A., & Szczepek, A. J. (2018). Pathophysiology of subjective tinnitus: Triggers and maintenance. Front Neurosci, 12, 866. https://doi.org/10.3389/fnins.2018.00866

Article  PubMed  PubMed Central  Google Scholar 

Hartwig, F. P., Davey Smith, G., & Bowden, J. (2017). Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. International Journal of Epidemiology, 46, 1985–1998. https://doi.org/10.1093/ije/dyx102

Article  PubMed  PubMed Central  Google Scholar 

Husain, F. T., & Schmidt, S. A. (2014). Using resting state functional connectivity to unravel networks of tinnitus. Hearing Research, 307, 153–162. https://doi.org/10.1016/j.heares.2013.07.010

Article  PubMed  Google Scholar 

Husain, F. T., Medina, R. E., Davis, C. W., Szymko-Bennett, Y., Simonyan, K., Pajor, N. M., & Horwitz, B. (2011). Neuroanatomical changes due to hearing loss and chronic tinnitus: A combined VBM and DTI study. Brain Research, 1369, 74–88. https://doi.org/10.1016/j.brainres.2010.10.095

Article  CAS  PubMed  Google Scholar 

Jones, E. G., & Porter, R. (1980). What is area 3a? Brain Research, 203, 1–43. https://doi.org/10.1016/0165-0173(80)90002-8

Article  CAS  PubMed  Google Scholar 

Kok, T. E., Domingo, D., Hassan, J., Vuong, A., Hordacre, B., Clark, C., Katrakazas, P., & Shekhawat, G. S. (2022). Resting-state networks in tinnitus: A scoping review. Clinical Neuroradiology, 32, 903–922. https://doi.org/10.1007/s00062-022-01170-1

Article  PubMed  PubMed Central  Google Scholar 

Leaver, A. M., Seydell-Greenwald, A., Turesky, T. K., Morgan, S., Kim, H. J., & Rauschecker, J. P. (2012). Cortico-limbic morphology separates tinnitus from tinnitus distress. Frontiers in Systems Neuroscience, 6, 21. https://doi.org/10.3389/fnsys.2012.00021

Article  PubMed  PubMed Central  Google Scholar 

Lewald, J., Meister, I. G., Weidemann, J., & Töpper, R. (2004). Involvement of the superior temporal cortex and the occipital cortex in spatial hearing: Evidence from repetitive transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 16, 828–838. https://doi.org/10.1162/089892904970834

Article  PubMed  Google Scholar 

Maudoux, A., Lefebvre, P., Cabay, J. E., Demertzi, A., Vanhaudenhuyse, A., Laureys, S., & Soddu, A. (2012). Auditory resting-state network connectivity in tinnitus: A functional MRI study. PloS One, 7, e36222. https://doi.org/10.1371/journal.pone.0036222

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience, 7, 818–827. https://doi.org/10.1038/nrn1993

Article  CAS  PubMed  Google Scholar 

Mu, C., Dang, X., & Luo, X. J. (2024). Mendelian randomization analyses reveal causal relationships between brain functional networks and risk of psychiatric disorders. Nat Hum Behav, 8, 1417–1428. https://doi.org/10.1038/s41562-024-01879-8

Article  PubMed  Google Scholar 

Neff, P., Simões, J., Psatha, S., Nyamaa, A., Boecking, B., Rausch, L., Dettling-Papargyris, J., Funk, C., Brueggemann, P., & Mazurek, B. (2021). The impact of tinnitus distress on cognition. Scientific Reports, 11, 2243.

Comments (0)

No login
gif