Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18, 177–185. https://doi.org/10.1016/j.tics.2013.12.003
Benjamini, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Bowden, J., Davey Smith, G., & Burgess, S. (2015). Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. International Journal of Epidemiology, 44, 512–525. https://doi.org/10.1093/ije/dyv080
Article PubMed PubMed Central Google Scholar
Bowden, J., Davey Smith, G., Haycock, P. C., & Burgess, S. (2016). Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genetic Epidemiology, 40, 304–314. https://doi.org/10.1002/gepi.21965
Article PubMed PubMed Central Google Scholar
Bowden, J., Del Greco, M. F., Minelli, C., Zhao, Q., Lawlor, D. A., Sheehan, N. A., Thompson, J., & Davey Smith, G. (2019). Improving the accuracy of two-sample summary-data mendelian randomization: Moving beyond the NOME assumption. International Journal of Epidemiology, 48, 728–742. https://doi.org/10.1093/ije/dyy258
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. https://doi.org/10.1196/annals.1440.011
Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yan, J., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Patterson, N., Daly, M. J., Price, A. L., & Neale, B. M. (2015). LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 47, 291–295. https://doi.org/10.1038/ng.3211
Article CAS PubMed PubMed Central Google Scholar
Burgess, S., Thompson, S. G., & Genetics Collaboration, C. R. P. C. H. D. (2011). Avoiding bias from weak instruments in mendelian randomization studies. International Journal of Epidemiology, 40, 755–764. https://doi.org/10.1093/ije/dyr036
Burgess, S., Butterworth, A., & Thompson, S. G. (2013). Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology, 37, 658–665. https://doi.org/10.1002/gepi.21758
Article PubMed PubMed Central Google Scholar
Burgess, S., Scott, R. A., Timpson, N. J., Smith, G. D., Thompson, S. G., & Consortium, E. P. I. C. I. A. (2015). Using published data in mendelian randomization: A blueprint for efficient identification of causal risk factors. European Journal of Epidemiology, 30, 543–552. https://doi.org/10.1007/s10654-015-0011-z
Article PubMed PubMed Central Google Scholar
Chen, Y. C., Li, X., Liu, L., Wang, J., Lu, C. Q., Yang, M., Jiao, Y., Zang, F. C., Radziwon, K., Chen, G. D., Sun, W., Muthaiah, V. P. K., Salvi, R., & Teng, G. J. (2015). Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network. eLife, 4, e06576. https://doi.org/10.7554/eLife.06576
Article PubMed PubMed Central Google Scholar
Chen, Y. C., Feng, Y., Xu, J. J., Mao, C. N., Xia, W., Ren, J., & Yin, X. (2016). Disrupted brain functional network architecture in chronic tinnitus patients. Frontiers in Aging Neuroscience, 8, 174. https://doi.org/10.3389/fnagi.2016.00174
Article PubMed PubMed Central Google Scholar
Claeys, E. H. I., Mantingh, T., Morrens, M., Yalin, N., & Stokes, P. R. A. (2022). Resting-state fMRI in depressive and (hypo)manic mood states in bipolar disorders: A systematic review. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 113, 110465. https://doi.org/10.1016/j.pnpbp.2021.110465
Darrous, L., Hemani, G., Davey Smith, G., & Kutalik, Z. (2024). PheWAS-based clustering of mendelian randomisation instruments reveals distinct mechanism-specific causal effects between obesity and educational attainment. Nature Communications, 15, 1420. https://doi.org/10.1038/s41467-024-45655-8
Article CAS PubMed PubMed Central Google Scholar
De Ridder, D., Vanneste, S., Weisz, N., Londero, A., Schlee, W., Elgoyhen, A. B., & Langguth, B. (2014). An integrative model of auditory phantom perception: Tinnitus as a unified percept of interacting separable subnetworks. Neuroscience and Biobehavioral Reviews, 44, 16–32. https://doi.org/10.1016/j.neubiorev.2013.03.021
Eggermont, J. J., & Roberts, L. E. (2004). The neuroscience of tinnitus. Trends in Neurosciences, 27, 676–682. https://doi.org/10.1016/j.tins.2004.08.010
Article CAS PubMed Google Scholar
Greco, F. D., Minelli, M. C., Sheehan, N. A., & Thompson, J. R. (2015). Detecting pleiotropy in mendelian randomisation studies with summary data and a continuous outcome. Statistics in Medicine, 34, 2926–2940. https://doi.org/10.1002/sim.6522
Haider, H. F., Bojić, T., Ribeiro, S. F., Paço, J., Hall, D. A., & Szczepek, A. J. (2018). Pathophysiology of subjective tinnitus: Triggers and maintenance. Front Neurosci, 12, 866. https://doi.org/10.3389/fnins.2018.00866
Article PubMed PubMed Central Google Scholar
Hartwig, F. P., Davey Smith, G., & Bowden, J. (2017). Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. International Journal of Epidemiology, 46, 1985–1998. https://doi.org/10.1093/ije/dyx102
Article PubMed PubMed Central Google Scholar
Husain, F. T., & Schmidt, S. A. (2014). Using resting state functional connectivity to unravel networks of tinnitus. Hearing Research, 307, 153–162. https://doi.org/10.1016/j.heares.2013.07.010
Husain, F. T., Medina, R. E., Davis, C. W., Szymko-Bennett, Y., Simonyan, K., Pajor, N. M., & Horwitz, B. (2011). Neuroanatomical changes due to hearing loss and chronic tinnitus: A combined VBM and DTI study. Brain Research, 1369, 74–88. https://doi.org/10.1016/j.brainres.2010.10.095
Article CAS PubMed Google Scholar
Jones, E. G., & Porter, R. (1980). What is area 3a? Brain Research, 203, 1–43. https://doi.org/10.1016/0165-0173(80)90002-8
Article CAS PubMed Google Scholar
Kok, T. E., Domingo, D., Hassan, J., Vuong, A., Hordacre, B., Clark, C., Katrakazas, P., & Shekhawat, G. S. (2022). Resting-state networks in tinnitus: A scoping review. Clinical Neuroradiology, 32, 903–922. https://doi.org/10.1007/s00062-022-01170-1
Article PubMed PubMed Central Google Scholar
Leaver, A. M., Seydell-Greenwald, A., Turesky, T. K., Morgan, S., Kim, H. J., & Rauschecker, J. P. (2012). Cortico-limbic morphology separates tinnitus from tinnitus distress. Frontiers in Systems Neuroscience, 6, 21. https://doi.org/10.3389/fnsys.2012.00021
Article PubMed PubMed Central Google Scholar
Lewald, J., Meister, I. G., Weidemann, J., & Töpper, R. (2004). Involvement of the superior temporal cortex and the occipital cortex in spatial hearing: Evidence from repetitive transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 16, 828–838. https://doi.org/10.1162/089892904970834
Maudoux, A., Lefebvre, P., Cabay, J. E., Demertzi, A., Vanhaudenhuyse, A., Laureys, S., & Soddu, A. (2012). Auditory resting-state network connectivity in tinnitus: A functional MRI study. PloS One, 7, e36222. https://doi.org/10.1371/journal.pone.0036222
Article CAS PubMed PubMed Central Google Scholar
Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience, 7, 818–827. https://doi.org/10.1038/nrn1993
Article CAS PubMed Google Scholar
Mu, C., Dang, X., & Luo, X. J. (2024). Mendelian randomization analyses reveal causal relationships between brain functional networks and risk of psychiatric disorders. Nat Hum Behav, 8, 1417–1428. https://doi.org/10.1038/s41562-024-01879-8
Neff, P., Simões, J., Psatha, S., Nyamaa, A., Boecking, B., Rausch, L., Dettling-Papargyris, J., Funk, C., Brueggemann, P., & Mazurek, B. (2021). The impact of tinnitus distress on cognition. Scientific Reports, 11, 2243.
Comments (0)