Ageeva, T., Rizvanov, A., Mukhamedshina, Y. (2024). NF-κB and JAK/STAT Signaling Pathways as Crucial Regulators of Neuroinflammation and Astrocyte Modulation in Spinal Cord Injury. Cells, 13(7). https://doi.org/10.3390/cells13070581
Albert-Gascó, H., Ros-Bernal, F., Castillo-Gómez, E., Olucha-Bordonau, F. E. (2020). MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its Effect on Pathological and Neurodegenerative Processes. Int J Mol Sci 21(12). https://doi.org/10.3390/ijms21124471
Alenina, N., & Klempin, F. (2015). The role of serotonin in adult hippocampal neurogenesis. Behavioural Brain Research., 277, 49–57.
Article CAS PubMed Google Scholar
Amelchenko, E. M., Bezriadnov, D. V., Chekhov, O. A., Anokhin, K. V., Lazutkin, A. A., & Enikolopov, G. (2023). Age-related decline in cognitive flexibility is associated with the levels of hippocampal neurogenesis. Frontiers in Neuroscience., 17, 1232670.
Article PubMed PubMed Central Google Scholar
Azargoonjahromi, A., Abutalebian, F., Hoseinpour, F. (2024). The role of resveratrol in neurogenesis: a systematic review. Nutrition Reviews, nuae025. https://doi.org/10.1093/nutrit/nuae025
Azargoonjahromi, A. (2023). Dual role of nitric oxide in Alzheimer’s disease. Nitric Oxide, 134–135, 23–37. https://doi.org/10.1016/j.niox.2023.03.003
Article CAS PubMed Google Scholar
Azargoonjahromi, A. (2024a). The duality of amyloid-β: Its role in normal and Alzheimer’s disease states. Molecular Brain, 17(1), 44. https://doi.org/10.1186/s13041-024-01118-1
Article CAS PubMed PubMed Central Google Scholar
Azargoonjahromi, A. (2024b). For the Alzheimer’s Disease Neuroimaging I. Serotonin enhances neurogenesis biomarkers, hippocampal volumes, and cognitive functions in Alzheimer’s disease. Molecular Brain, 17(1), 93. https://doi.org/10.1186/s13041-024-01169-4
Article CAS PubMed PubMed Central Google Scholar
Azargoonjahromi, A., & Abutalebian, F. (2024). Unraveling the therapeutic efficacy of resveratrol in Alzheimer’s disease: An umbrella review of systematic evidence. Nutrition & Metabolism., 21(1), 15. https://doi.org/10.1186/s12986-024-00792-1
Benninghoff, J., Van Der Ven, A., Schloesser, R. J., Moessner, R., Möller, H. J., & Rujescu, D. (2012). The complex role of the serotonin transporter in adult neurogenesis and neuroplasticity. A critical review. The World Journal of Biological Psychiatry, 13(4), 240–247.
Berron, D., Vogel, J. W., Insel, P. S., Pereira, J. B., Xie, L., Wisse, L. E. M., et al. (2021). Early stages of tau pathology and its associations with functional connectivity, atrophy and memory. Brain, 144(9), 2771–2783. https://doi.org/10.1093/brain/awab114
Article PubMed PubMed Central Google Scholar
Biomarkers. https://research.nightingalehealth.com/blood-analysis-service Accessed.
Bloom, G. S. (2014). Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology., 71(4), 505–508.
Bombardi, C., Grandis, A., Pivac, N., Sagud, M., Lucas, G., Chagraoui, A., et al. (2021). Chapter 3 - Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. In G. Di Giovanni & P. De Deurwaerdere (Eds.), Progress in Brain Research (pp. 83–158). Elsevier.
Bruel-Jungerman, E., Veyrac, A., Dufour, F., Horwood, J., Laroche, S., & Davis, S. (2009). Inhibition of PI3K-Akt signaling blocks exercise-mediated enhancement of adult neurogenesis and synaptic plasticity in the dentate gyrus. PLoS ONE, 4(11), e7901.
Article PubMed PubMed Central Google Scholar
Choi, S. H., & Tanzi, R. E. (2023). Adult neurogenesis in Alzheimer’s disease. Hippocampus, 33(4), 307–21. https://doi.org/10.1002/hipo.23504
Chojnacki, C., Gąsiorowska, A., Popławski, T., Konrad, P., Chojnacki, M., Fila, M., & Blasiak, J. (2023). Beneficial effect of increased tryptophan intake on its metabolism and mental state of the elderly. Nutrients, 15(4), 847.
Article CAS PubMed PubMed Central Google Scholar
Christensen, G. E., Joshi, S. C., & Miller, M. I. (1997). Volumetric transformation of brain anatomy. IEEE Transactions on Medical Imaging, 16(6), 864–877. https://doi.org/10.1109/42.650882
Article CAS PubMed Google Scholar
Colavitta, M. F., & Barrantes, F. J. (2023). Therapeutic strategies aimed at improving neuroplasticity in Alzheimer disease. Pharmaceutics., 15(8), 2052.
Article CAS PubMed PubMed Central Google Scholar
Dale, E., Pehrson, A. L., Jeyarajah, T., Li, Y., Leiser, S. C., Smagin, G., et al. (2016). Effects of serotonin in the hippocampus: How SSRIs and multimodal antidepressants might regulate pyramidal cell function. CNS Spectrums, 21(2), 143–161. https://doi.org/10.1017/s1092852915000425
Danieli, K., Guyon, A., & Bethus, I. (2023). Episodic Memory formation: A review of complex Hippocampus input pathways. Progress in Neuro-Psychopharmacology and Biological Psychiatry., 126, 110757.
Delghandi, M. P., Johannessen, M., & Moens, U. (2005). The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cellular Signalling, 17(11), 1343–1351. https://doi.org/10.1016/j.cellsig.2005.02.003
Article CAS PubMed Google Scholar
Fiedler, D., Sasi, M., Blum, R., Klinke, C. M., Andreatta, M., Pape, H. C., & Lange, M. D. (2021). Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling Controls Excitability and Long-Term Depression in Oval Nucleus of the BNST. Journal of Neuroscience, 41(3), 435–445. https://doi.org/10.1523/jneurosci.1104-20.2020
Article CAS PubMed Google Scholar
Finkbeiner, S., Tavazoie, S. F., Maloratsky, A., Jacobs, K. M., Harris, K. M., & Greenberg, M. E. (1997). CREB: A major mediator of neuronal neurotrophin responses. Neuron, 19(5), 1031–1047. https://doi.org/10.1016/s0896-6273(00)80395-5
Article CAS PubMed Google Scholar
Furcila, D., Domínguez-Álvaro, M., DeFelipe, J., & Alonso-Nanclares, L. (2019). Subregional density of neurons, neurofibrillary tangles and amyloid plaques in the hippocampus of patients with Alzheimer’s disease. Frontiers in Neuroanatomy., 13, 99.
Article CAS PubMed PubMed Central Google Scholar
Hardcastle, C., O’Shea, A., Kraft, J. N., Albizu, A., Evangelista, N. D., Hausman, H. K., et al. (2020). Contributions of Hippocampal Volume to Cognition in Healthy Older Adults. Frontiers in Aging Neuroscience, 12. https://doi.org/10.3389/fnagi.2020.593833
Harith, M. (2023). The Interplay of Tau and Amyloid Beta Pathologies in Alzheimer's Disease. Journal of Student Research. 12(4).
Höglund E, Øverli Ø, Winberg S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00158
Hollands, C., Tobin, M. K., Hsu, M., Musaraca, K., Yu, T.-S., Mishra, R., et al. (2017). Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer’s disease by compromising hippocampal inhibition. Molecular Neurodegeneration., 12(1), 64. https://doi.org/10.1186/s13024-017-0207-7
Article CAS PubMed PubMed Central Google Scholar
Horwood, J. M., Dufour, F., Laroche, S., & Davis, S. (2006). Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. European Journal of Neuroscience., 23(12), 3375–3384. https://doi.org/10.1111/j.1460-9568.2006.04859.x
Hsu, Y. Y., Schuff, N., Du, A. T., Mark, K., Zhu, X., Hardin, D., & Weiner, M. W. (2002). Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia. Journal of Magnetic Resonance Imaging, 16(3), 305–310. https://doi.org/10.1002/jmri.10163
https://research.nightingalehealth.com/ Accessed.
Hughes, C. P., Berg, L., Danziger, W., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry., 140(6), 566–572.
Article CAS PubMed Google Scholar
Iroegbu, J. D., Ijomone, O. K., Femi-Akinlosotu, O. M., & Ijomone, O. M. (2021). ERK/MAPK signalling in the developing brain: Perturbations and consequences. Neuroscience & Biobehavioral Reviews., 131, 792–805. https://doi.org/10.1016/j.neubiorev.2021.10.009
Jenkins, T. A., Nguyen, J. C., Polglaze, K. E., Bertrand. P. P. (2016). Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients, 8(1). https://doi.org/10.3390/nu8010056
Kalyanaraman, B., Cheng, G., Hardy, M., Ouari, O., Bennett, B., & Zielonka, J. (2018). Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biology., 15, 347–362. https://doi.org/10.1016/j.redox.2017.12.012
Comments (0)