Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annu Rev Psychol,60, 693–716. https://doi.org/10.1146/annurev.psych.60.110707.163514
Article PubMed PubMed Central Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Author.
Arnatkeviciute, A., & Fulcher, B. D. (2021). Genetic influences on hub connectivity of the human connectome. 12(1), 4237. https://doi.org/10.1038/s41467-021-24306-2
Arnatkeviciute, A., Fulcher, B. D., & Fornito, A. (2019). A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage,189, 353–367. https://doi.org/10.1016/j.neuroimage.2019.01.011
Arnatkeviciute, A., Markello, R. D., Fulcher, B. D., Misic, B., & Fornito, A. (2023). Toward best practices for imaging transcriptomics of the human brain. Biological Psychiatry,93(5), 391–404. https://doi.org/10.1016/j.biopsych.2022.10.016
Article PubMed CAS Google Scholar
Brothers, L., Ring, B., & Kling, A. (1990). Response of neurons in the macaque amygdala to complex social stimuli. Behavioural Brain Research,41(3), 199–213. https://doi.org/10.1016/0166-4328(90)90108-q
Article PubMed CAS Google Scholar
Brunet-Gouet, E., & Decety, J. (2006). Social brain dysfunctions in schizophrenia: A review of neuroimaging studies. Psychiatry Research,148(2–3), 75–92. https://doi.org/10.1016/j.pscychresns.2006.05.001
Burns, J. K. (2004). An evolutionary theory of schizophrenia: cortical connectivity, metarepresentation, and the social brain. Behav Brain Sci, 27(6), 831–855; discussion 855–885. https://doi.org/10.1017/s0140525x04000196
Burns, J. (2006). The social brain hypothesis of schizophrenia. World Psychiatry,5(2), 77–81.
PubMed PubMed Central Google Scholar
Cai, M., Ji, Y., Zhao, Q., Xue, H., Sun, Z., Wang, H., & Liu, F. (2024). Homotopic functional connectivity disruptions in schizophrenia and their associated gene expression. Neuroimage,289, 120551. https://doi.org/10.1016/j.neuroimage.2024.120551
Article PubMed CAS Google Scholar
Carvalho, F. R., Nóbrega, C. D. R., & Martins, A. T. (2020). Mapping gene expression in social anxiety reveals the main brain structures involved in this disorder. Behavioural Brain Research,394, 112808. https://doi.org/10.1016/j.bbr.2020.112808
Article PubMed CAS Google Scholar
Diehl, T., Mullins, R., & Kapogiannis, D. (2017). Insulin resistance in Alzheimer’s disease. Translational Research: the Journal of Laboratory and Clinical Medicine,183, 26–40. https://doi.org/10.1016/j.trsl.2016.12.005
Article PubMed CAS Google Scholar
Duan, J., Xia, M., Womer, F. Y., Chang, M., Yin, Z., Zhou, Q., & Wang, F. (2019). Dynamic changes of functional segregation and integration in vulnerability and resilience to schizophrenia. Human Brain Mapping,40(7), 2200–2211. https://doi.org/10.1002/hbm.24518
Article PubMed PubMed Central Google Scholar
Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution,22(6), 469–493.
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology Issues News & Reviews,6(5), 178–190.
Dunbar, R. I. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology,36(5), 562–572. https://doi.org/10.1080/03014460902960289
Article PubMed CAS Google Scholar
Fowler, J. H., Dawes, C. T., & Christakis, N. A. (2009). Model of genetic variation in human social networks. Proc Natl Acad Sci U S A,106(6), 1720–1724. https://doi.org/10.1073/pnas.0806746106
Article PubMed PubMed Central Google Scholar
Fulford, D., Campellone, T., & Gard, D. E. (2018). Social motivation in schizophrenia: How research on basic reward processes informs and limits our Understanding. Clinical Psychology Review,63, 12–24. https://doi.org/10.1016/j.cpr.2018.05.007
García, R. R., Aliste, F., & Soto, G. (2018). Social cognition in schizophrenia: Cognitive and Neurobiological aspects. Rev Colomb Psiquiatr (Engl Ed),47(3), 170–176. https://doi.org/10.1016/j.rcp.2017.03.004
Han, Y., Yang, Y., Zhou, Z., Jin, X., Shi, H., Shao, M., & Lv, L. (2023). Cortical anatomical variations, gene expression profiles, and clinical phenotypes in patients with schizophrenia. Neuroimage Clin,39, 103451. https://doi.org/10.1016/j.nicl.2023.103451
Article PubMed PubMed Central Google Scholar
Hashimoto, R., Ohi, K., Yamamori, H., Yasuda, Y., Fujimoto, M., Umeda-Yano, S., & Takeda, M. (2015). Imaging genetics and psychiatric disorders. Current Molecular Medicine,15(2), 168–175. https://doi.org/10.2174/1566524015666150303104159
Article PubMed PubMed Central CAS Google Scholar
Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., & Jones, A. R. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature,489(7416), 391–399. https://doi.org/10.1038/nature11405
Article PubMed PubMed Central CAS Google Scholar
Ishai, A. (2008). Let’s face it: It’s a cortical network. Neuroimage,40(2), 415–419. https://doi.org/10.1016/j.neuroimage.2007.10.040
Jasinska, A. J., Yasuda, M., Rhodes, R. E., Wang, C., & Polk, T. A. (2012). Task difficulty modulates the impact of emotional stimuli on neural response in cognitive-control regions. Frontiers in Psychology,3, 345. https://doi.org/10.3389/fpsyg.2012.00345
Article PubMed PubMed Central Google Scholar
Kennedy, D. P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences,16(11), 559–572. https://doi.org/10.1016/j.tics.2012.09.006
Article PubMed PubMed Central Google Scholar
Larabi, D. I., Marsman, J. C., Aleman, A., Tijms, B. M., Opmeer, E. M., Pijnenborg, G. H. M., & Ćurčić-Blake, B. (2021). Insight does not come at random: Individual Gray matter networks relate to clinical and cognitive insight in schizophrenia. Progress in Neuropsychopharmacology and Biological Psychiatry,109, 110251. https://doi.org/10.1016/j.pnpbp.2021.110251
Liang, X., Sun, L., Liao, X., Lei, T., Xia, M., Duan, D., & He, Y. (2024). Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence. Nature Communications,15(1), 784. https://doi.org/10.1038/s41467-024-44863-6
Article PubMed PubMed Central CAS Google Scholar
Liu, W., Peeters, N., Fernández, G., & Kohn, N. (2020). Common neural and transcriptional correlates of inhibitory control underlie emotion regulation and memory control. Soc Cogn Affect Neurosci,15(5), 523–536. https://doi.org/10.1093/scan/nsaa073
Article PubMed PubMed Central Google Scholar
Meyer-Lindenberg, A., & Tost, H. (2012). Neural mechanisms of social risk for psychiatric disorders. Nature Neuroscience,15(5), 663–668. https://doi.org/10.1038/nn.3083
Article PubMed CAS Google Scholar
Mier, D., & Kirsch, P. (2017). Social-Cognitive deficits in schizophrenia. Current Topics in Behavioral Neurosciences,30, 397–409. https://doi.org/10.1007/7854_2015_427
Oliver, L. D., Hawco, C., Homan, P., Lee, J., Green, M. F., Gold, J. M., & Voineskos, A. N. (2021). Social cognitive networks and social cognitive performance across individuals with schizophrenia spectrum disorders and healthy control participants. Biol Psychiatry Cogn Neurosci Neuroimaging,6(12), 1202–1214. https://doi.org/10.1016/j.bpsc.2020.11.014
Palaniyappan, L., Park, B., Balain, V., Dangi, R., & Liddle, P. (2015). Abnormalities in structural covariance of cortical gyrification in schizophrenia. Brain Struct Funct,220(4), 2059–2071. https://doi.org/10.1007/s00429-014-0772-2
Comments (0)