Reduced automaticity in freezing of gait is associated with elevated cortico-cerebellar connectivity

Andersson, J. L., Hutton, C., Ashburner, J., Turner, R., & Friston, K. (2001). Modeling geometric deformations in EPI time series. NeuroImage, 13(5), 903–919.

Article  PubMed  CAS  Google Scholar 

Armstrong, D. M. (1988). The supraspinal control of mammalian locomotion. Journal of Physiology, 405, 1–37.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.

Article  PubMed  Google Scholar 

Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851.

Article  PubMed  Google Scholar 

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101.

Article  PubMed  Google Scholar 

Belluscio, V., Stuart, S., Bergamini, E., Vannozzi, G., & Mancini, M. (2019). The association between prefrontal cortex activity and turning behavior in people with and without freezing of gait. Neuroscience, 416, 168–176.

Article  PubMed  CAS  Google Scholar 

Bloem, B. R., Grimbergen, Y. A., van Dijk, J. G., & Munneke, M. (2006). The, “posture second” strategy: A review of wrong priorities in Parkinson’s disease. Journal of the Neurological Sciences, 248(1–2), 196–204.

Article  PubMed  Google Scholar 

Boyne, P., Maloney, T., DiFrancesco, M., et al. (2018). Resting-state functional connectivity of subcortical locomotor centers explains variance in walking capacity. Human Brain Mapping, 39(12), 4831–4843.

Article  PubMed  PubMed Central  Google Scholar 

Calhoun, V. D., Wager, T. D., Krishnan, A., et al. (2017). The impact of T1 versus EPI spatial normalization templates for fMRI data analyses. Human Brain Mapping, 38(11), 5331–5342.

Article  PubMed  PubMed Central  Google Scholar 

Chai, X. J., Castanon, A. N., Ongur, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. NeuroImage, 59(2), 1420–1428.

Article  PubMed  Google Scholar 

Chumbley, J., Worsley, K., Flandin, G., & Friston, K. (2010). Topological FDR for neuroimaging. NeuroImage, 49(4), 3057–3064.

Article  PubMed  CAS  Google Scholar 

Clark, D. J. (2015). Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies. Frontiers in Human Neuroscience, 9, 246.

Article  PubMed  PubMed Central  Google Scholar 

Coffman, K. A., Dum, R. P., & Strick, P. L. (2011). Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proceedings of the National Academy of Sciences U S A, 108(38), 16068–16073.

Article  CAS  Google Scholar 

de Souza Fortaleza, A. C., Mancini, M., Carlson-Kuhta, P., et al. (2017). Dual task interference on postural sway, postural transitions and gait in people with Parkinson’s disease and freezing of gait. Gait & Posture, 56, 76–81.

Article  Google Scholar 

Doolittle, J. D., Downey, R. J., Imperatore, J. P., et al. (2020). Evaluating a novel MR-compatible foot pedal devicefor unipedal and bipedal motion: Test-retest reliability of evoked brain activity. Human Brain Mapping, 42(1), 128–138.

Article  PubMed  PubMed Central  Google Scholar 

Fasano, A., Laganiere, S. E., Lam, S., & Fox, M. D. (2017). Lesions causing freezing of gait localize to a cerebellar functional network. Annals of Neurology, 81(1), 129–141.

Article  PubMed  PubMed Central  Google Scholar 

Festini, S. B., Bernard, J. A., Kwak, Y., et al. (2015). Altered cerebellar connectivity in Parkinson’s patients ON and OFF L-DOPA medication. Frontiers in Human Neuroscience, 9, 214.

Article  PubMed  PubMed Central  Google Scholar 

Fling, B. W., Cohen, R. G., Mancini, M., et al. (2014). Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One, 9(6), e100291.

Article  PubMed  PubMed Central  Google Scholar 

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346–355.

Article  PubMed  CAS  Google Scholar 

Fujita, H., Kodama, T., & du Lac, S. (2020). Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife, 9:e58613.

Gardoni, A., Agosta, F., Sarasso, E., et al. (2023). Cerebellar alterations in Parkinson’s disease with postural instability and gait disorders. Journal of Neurology, 270(3), 1735–1744.

Article  PubMed  Google Scholar 

Hallett, M. (2008). The intrinsic and extrinsic aspects of freezing of gait. Movement Disorder, 23(Suppl 2), S439-443. 0 2.

Article  Google Scholar 

Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage, 82, 208–225.

Article  PubMed  Google Scholar 

Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders, 13(3), 428–437.

Article  PubMed  CAS  Google Scholar 

Hirata, K., Hattori, T., Kina, S., Chen, Q., Ohara, M., & Yokota, T. (2020). Striatal dopamine denervation impairs gait automaticity in drug-naive Parkinson’s disease patients. Movement Disorders, 35(6), 1037–1045.

Article  PubMed  CAS  Google Scholar 

Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery and Psychiatry, 55(3), 181–184.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jung, J. H., Kim, B. H., Chung, S. J., et al. (2020). Motor cerebellar connectivity and future development of freezing of gait in de novo Parkinson’s disease. Movement Disorders, 35(12), 2240–2249.

Article  PubMed  Google Scholar 

Lench, D. H., Embry, A., Hydar, A., Hanlon, C. A., & Revuelta, G. (2020). Increased on-state cortico-mesencephalic functional connectivity in Parkinson disease with freezing of gait. Parkinsonism & Related Disorders, 72, 31–36.

Article  Google Scholar 

Lench, D. H., DeVries, W., Kearney-Ramos, T. E., et al. (2021). Paired inhibitory stimulation and gait training modulates supplemental motor area connectivity in freezing of gait. Parkinsonism & Related Disorders, 88, 28–33.

Article  CAS  Google Scholar 

Maiti, B., Rawson, K. S., Tanenbaum, A. B., et al. (2021). Functional connectivity of vermis correlates with future gait impairments in Parkinson’s disease. Movement Disorders, 36(11), 2559–2568.

Article  PubMed  PubMed Central  Google Scholar 

Marchal, V., Sellers, J., Pelegrini-Issac, M., et al. (2019). Deep brain activation patterns involved in virtual gait without and with a doorway: An fMRI study. PLoS One, 14(10), e0223494.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mori, S., Matsui, T., Kuze, B., Asanome, M., Nakajima, K., & Matsuyama, K. (1999). Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. Journal of Neurophysiology, 82(1), 290–300.

Article  PubMed  CAS  Google Scholar 

Morton, S. M., & Bastian, A. J. (2004). Cerebellar control of balance and locomotion. The Neuroscientist, 10(3), 247–259.

Article  PubMed  Google Scholar 

Nakagawa, E., Yamanouchi, H., Sakuragawa, N., & Takashima, S. (1994). Vermis lesions in acute cerebellar ataxia: A sequential imaging study. Brain & Development, 16(6), 488–490.

Article  CAS 

Comments (0)

No login
gif