Andersson, J. L., Hutton, C., Ashburner, J., Turner, R., & Friston, K. (2001). Modeling geometric deformations in EPI time series. NeuroImage, 13(5), 903–919.
Article PubMed CAS Google Scholar
Armstrong, D. M. (1988). The supraspinal control of mammalian locomotion. Journal of Physiology, 405, 1–37.
Article PubMed PubMed Central CAS Google Scholar
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851.
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101.
Belluscio, V., Stuart, S., Bergamini, E., Vannozzi, G., & Mancini, M. (2019). The association between prefrontal cortex activity and turning behavior in people with and without freezing of gait. Neuroscience, 416, 168–176.
Article PubMed CAS Google Scholar
Bloem, B. R., Grimbergen, Y. A., van Dijk, J. G., & Munneke, M. (2006). The, “posture second” strategy: A review of wrong priorities in Parkinson’s disease. Journal of the Neurological Sciences, 248(1–2), 196–204.
Boyne, P., Maloney, T., DiFrancesco, M., et al. (2018). Resting-state functional connectivity of subcortical locomotor centers explains variance in walking capacity. Human Brain Mapping, 39(12), 4831–4843.
Article PubMed PubMed Central Google Scholar
Calhoun, V. D., Wager, T. D., Krishnan, A., et al. (2017). The impact of T1 versus EPI spatial normalization templates for fMRI data analyses. Human Brain Mapping, 38(11), 5331–5342.
Article PubMed PubMed Central Google Scholar
Chai, X. J., Castanon, A. N., Ongur, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. NeuroImage, 59(2), 1420–1428.
Chumbley, J., Worsley, K., Flandin, G., & Friston, K. (2010). Topological FDR for neuroimaging. NeuroImage, 49(4), 3057–3064.
Article PubMed CAS Google Scholar
Clark, D. J. (2015). Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies. Frontiers in Human Neuroscience, 9, 246.
Article PubMed PubMed Central Google Scholar
Coffman, K. A., Dum, R. P., & Strick, P. L. (2011). Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proceedings of the National Academy of Sciences U S A, 108(38), 16068–16073.
de Souza Fortaleza, A. C., Mancini, M., Carlson-Kuhta, P., et al. (2017). Dual task interference on postural sway, postural transitions and gait in people with Parkinson’s disease and freezing of gait. Gait & Posture, 56, 76–81.
Doolittle, J. D., Downey, R. J., Imperatore, J. P., et al. (2020). Evaluating a novel MR-compatible foot pedal devicefor unipedal and bipedal motion: Test-retest reliability of evoked brain activity. Human Brain Mapping, 42(1), 128–138.
Article PubMed PubMed Central Google Scholar
Fasano, A., Laganiere, S. E., Lam, S., & Fox, M. D. (2017). Lesions causing freezing of gait localize to a cerebellar functional network. Annals of Neurology, 81(1), 129–141.
Article PubMed PubMed Central Google Scholar
Festini, S. B., Bernard, J. A., Kwak, Y., et al. (2015). Altered cerebellar connectivity in Parkinson’s patients ON and OFF L-DOPA medication. Frontiers in Human Neuroscience, 9, 214.
Article PubMed PubMed Central Google Scholar
Fling, B. W., Cohen, R. G., Mancini, M., et al. (2014). Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One, 9(6), e100291.
Article PubMed PubMed Central Google Scholar
Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346–355.
Article PubMed CAS Google Scholar
Fujita, H., Kodama, T., & du Lac, S. (2020). Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife, 9:e58613.
Gardoni, A., Agosta, F., Sarasso, E., et al. (2023). Cerebellar alterations in Parkinson’s disease with postural instability and gait disorders. Journal of Neurology, 270(3), 1735–1744.
Hallett, M. (2008). The intrinsic and extrinsic aspects of freezing of gait. Movement Disorder, 23(Suppl 2), S439-443. 0 2.
Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage, 82, 208–225.
Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders, 13(3), 428–437.
Article PubMed CAS Google Scholar
Hirata, K., Hattori, T., Kina, S., Chen, Q., Ohara, M., & Yokota, T. (2020). Striatal dopamine denervation impairs gait automaticity in drug-naive Parkinson’s disease patients. Movement Disorders, 35(6), 1037–1045.
Article PubMed CAS Google Scholar
Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery and Psychiatry, 55(3), 181–184.
Article PubMed PubMed Central CAS Google Scholar
Jung, J. H., Kim, B. H., Chung, S. J., et al. (2020). Motor cerebellar connectivity and future development of freezing of gait in de novo Parkinson’s disease. Movement Disorders, 35(12), 2240–2249.
Lench, D. H., Embry, A., Hydar, A., Hanlon, C. A., & Revuelta, G. (2020). Increased on-state cortico-mesencephalic functional connectivity in Parkinson disease with freezing of gait. Parkinsonism & Related Disorders, 72, 31–36.
Lench, D. H., DeVries, W., Kearney-Ramos, T. E., et al. (2021). Paired inhibitory stimulation and gait training modulates supplemental motor area connectivity in freezing of gait. Parkinsonism & Related Disorders, 88, 28–33.
Maiti, B., Rawson, K. S., Tanenbaum, A. B., et al. (2021). Functional connectivity of vermis correlates with future gait impairments in Parkinson’s disease. Movement Disorders, 36(11), 2559–2568.
Article PubMed PubMed Central Google Scholar
Marchal, V., Sellers, J., Pelegrini-Issac, M., et al. (2019). Deep brain activation patterns involved in virtual gait without and with a doorway: An fMRI study. PLoS One, 14(10), e0223494.
Article PubMed PubMed Central CAS Google Scholar
Mori, S., Matsui, T., Kuze, B., Asanome, M., Nakajima, K., & Matsuyama, K. (1999). Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. Journal of Neurophysiology, 82(1), 290–300.
Article PubMed CAS Google Scholar
Morton, S. M., & Bastian, A. J. (2004). Cerebellar control of balance and locomotion. The Neuroscientist, 10(3), 247–259.
Nakagawa, E., Yamanouchi, H., Sakuragawa, N., & Takashima, S. (1994). Vermis lesions in acute cerebellar ataxia: A sequential imaging study. Brain & Development, 16(6), 488–490.
Comments (0)