Afidchao MM, Musters C, de Snoo GR. Asian corn borer (ACB) and non-ACB pests in GM corn (Zea mays L.) in the Philippines. Pest Manag Sci. 2013;69:792–801. https://doi.org/10.1002/ps.3471
Article PubMed CAS Google Scholar
Li J, Coates BS, Kim KS, Bourguet D, Ponsard S, He K, et al. The genetic structure of Asian corn borer, Ostrinia furnacalis, populations in China: haplotype variance in northern populations and potential impact on management of resistance to transgenic maize. J Hered. 2014;105:642–55. https://doi.org/10.1093/jhered/esu036
Article PubMed CAS Google Scholar
Nafus DM, Schreiner IH. Review of the biology and control of the Asian corn borer, Ostrinia furnacalis (Lep: Pyralidae). Tropical Pest Manag. 1991;37:41–56. https://doi.org/10.1080/09670879109371535
Liu X, Cooper AMW, Yu Z, Silver K, Zhang J, Zhu KY. Progress and prospects of arthropod chitin pathways and structures as targets for pest management. Pestic Biochem Physiol. 2019;161:33–46. https://doi.org/10.1016/j.pestbp.2019.08.002
Article PubMed CAS Google Scholar
Adrangi S, Faramarzi MA. From bacteria to human: a journey into the world of chitinases. Biotechnol Adv. 2013;31:1786–95. https://doi.org/10.1016/j.biotechadv.2013.09.012
Article PubMed CAS Google Scholar
Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE. Physicochemical properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem. 2005;53:3888–94. https://doi.org/10.1007/s11483-014-9378-8
Article PubMed CAS Google Scholar
Muthukrishnan S, Arakane Y, Noh MY, Mun S, Merzendorfer H, Boehringer C et al. Chapter one - chitin in insect cuticle. In: Sugumaran M, editor. Advances in Insect Physiology. Academic Press; 2022. p. 1-110
Yu A, Beck M, Merzendorfer H, Yang Q. Advances in understanding insect chitin biosynthesis. Insect Biochem Mol Biol. 2024;164:104058 https://doi.org/10.1016/j.ibmb.2023.104058
Article PubMed CAS Google Scholar
Merzendorfer H, Kelkenberg M, Muthukrishnan S Peritrophic matrices. In: Cohen E, Moussian B, editors. Extracellular Composite Matrices in Arthropods. Cham: Springer International Publishing; 2016. p. 255-324
Rabadiya D, Behr M. The biology of insect chitinases and their roles at chitinous cuticles. Insect Biochem Mol Biol. 2024;165:104071 https://doi.org/10.1016/j.ibmb.2024.104071
Article PubMed CAS Google Scholar
Han L-H, An Y-F. Performance of concrete-encased CFST stub columns under axial compression. J Constr Steel Res. 2014;93:62–76. https://doi.org/10.1016/j.jcsr.2013.10.019
Yuan P, Jiang X, Wang S, Shao X, Yang Q, Qian X. X-ray structure and molecular docking guided discovery of novel chitinase inhibitors with a scaffold of dipyridopyrimidine-3-carboxamide. J Agric Food Chem. 2020;68:13584–93. https://doi.org/10.1021/acs.jafc.0c03742
Article PubMed CAS Google Scholar
Chen W, Jiang X, Yang Q. Glycoside hydrolase family 18 chitinases: the known and the unknown. Biotechnol Adv. 2020;43:107553 https://doi.org/10.1016/j.biotechadv.2020.107553
Article PubMed CAS Google Scholar
Qu M-B, Sun S-P, Liu Y-S, Deng X-R, Yang J, Yang Q. Insect group II chitinase OfChtII promotes chitin degradation during larva–pupa molting. Insect Sci. 2021;28:692–704. https://doi.org/10.1111/1744-7917.12791
Article PubMed CAS Google Scholar
Daimon T, Hamada K, Mita K, Okano K, Suzuki MG, Kobayashi M, et al. A bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem Mol Biol. 2003;33:749–59. https://doi.org/10.1016/S0965-1748(03)00084-5
Article PubMed CAS Google Scholar
Liu T, Chen L, Zhou Y, Jiang X, Duan Y, Yang Q. Structure, catalysis, and inhibition of OfChi-h, the lepidoptera-exclusive insect chitinase*. J Biol Chem. 2017;292:2080–8. https://doi.org/10.1074/jbc.M116.755330
Article PubMed PubMed Central CAS Google Scholar
Daimon T, Katsuma S, Iwanaga M, Kang W, Shimada T. The BmChi-h gene, a bacterial-type chitinase gene of Bombyx mori, encodes a functional exochitinase that plays a role in the chitin degradation during the molting process. Insect Biochem Mol Biol. 2005;35:1112–23. https://doi.org/10.1016/j.ibmb.2005.05.005
Article PubMed CAS Google Scholar
Zou R, Li X, Jiang X, Shi D, Han Q, Duan H, et al. Novel butenolide derivatives as dual-chitinase inhibitors to arrest the growth and development of the Asian corn borer. J Agric Food Chem. 2024;72:5036–46. https://doi.org/10.1021/acs.jafc.3c06714
Article PubMed CAS Google Scholar
Zhu L, Chen L, Shao X, Cheng J, Yang Q, Qian X. Novel inhibitors of an insect pest chitinase: design and optimization of 9-O-aromatic and heterocyclic esters of berberine. J Agric Food Chem. 2021;69:7526–33. https://doi.org/10.1021/acs.jafc.0c07401
Article PubMed CAS Google Scholar
Chen L, Zhu L, Chen J, Chen W, Qian X, Yang Q. Crystal structure-guided design of berberine-based novel chitinase inhibitors. J Enzyme Inhib Med Chem. 2020;35:1937–43. https://doi.org/10.1080/14756366.2020.1837123
Article PubMed PubMed Central CAS Google Scholar
Huang H, Hua X, Liu N, Li X, Liu S, Chen X, et al. Anacardic acid induces cell apoptosis associated with induction of ATF4-dependent endoplasmic reticulum stress. Toxicol Lett. 2014;228:170–8. https://doi.org/10.1016/j.toxlet.2014.05.012
Article PubMed CAS Google Scholar
Rajamanikyam M, Vadlapudi V, Parvathaneni SP, Koude DD, Upadhyayula SM. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest. EXCLI J. 2017;16:375–87.
PubMed PubMed Central Google Scholar
He DC, Jiang X, Yang Q. Dual-targeted natural product inhibitors of Ostrinia furnacalis chitinases and inhibitory mechanisms. Chin J Pestic Sci. 2022;24:1171–8. https://doi.org/10.16801/j.issn.1008-7303.2022.0044
Han Q, Wu N, Li H-L, Zhang J-Y, Li X, Deng M-F, et al. A piperine-based scaffold as a novel starting point to develop inhibitors against the potent molecular target OfChtI. J Agric Food Chem. 2021;69:7534–44. https://doi.org/10.1021/acs.jafc.0c08119
Article PubMed CAS Google Scholar
Han Q, Wu N, Liu Y-Y, Zhang J-Y, Zhang R-L, Li H-L, et al. Piperonyl-tethered rhodanine derivatives potently inhibit chitinolytic enzymes of Ostrinia furnacalis. J Agric Food Chem. 2022;70:7387–99. https://doi.org/10.1021/acs.jafc.2c02091
Article PubMed CAS Google Scholar
Han Q, Wu N, Zhang J, Feng T, Zi Y, Zhang R, et al. Discovery of rhodanine inhibitors targeting of chti based on the π-stacking effect and aqueous solubility. J Agric Food Chem. 2023;71:18685–95. https://doi.org/10.1021/acs.jafc.3c05287
Article PubMed CAS Google Scholar
Bolchi C, Bavo F, Appiani R, Roda G, Pallavicini M. 1,4-benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: a review of its recent applications in drug design. Eur J Med Chem. 2020;200:112419 https://doi.org/10.1016/j.ejmech.2020.112419
Article PubMed CAS Google Scholar
Shehzad MT, Khan A, Islam M, Hameed A, Khiat M, Halim SA, et al. Synthesis and urease inhibitory activity of 1,4-benzodioxane-based thiosemicarbazones: biochemical and computational approach. J Mol Struct. 2020;1209:127922 https://doi.org/10.1016/j.molstruc.2020.127922
Pilkington LI, Wagoner J, Polyak SJ, Barker D. Enantioselective synthesis, stereochemical correction, and biological investigation of the rodgersinine family of 1,4-benzodioxane neolignans. Org Lett. 2015;17:1046–9. https://doi.org/10.1021/acs.orglett.5b00189
Article PubMed CAS Google Scholar
Chen Y-C, Cheng M-J, Lee S-J, Dixit AK, Ishikawa T, Tsai I-L, et al. Coumarinolignans from the Root of Formosan Antidesma pentandrum var. barbatum. Helvetica Chim Acta. 2004;87:2805–11. https://doi.org/10.1002/hlca.200490251
Comments (0)