Novel conjugated 5-alkenyl rhodanine tethered 1,4-benzodioxane derivatives as dual-chitinases inhibitors to hinder the growth of Asian corn borer

Afidchao MM, Musters C, de Snoo GR. Asian corn borer (ACB) and non-ACB pests in GM corn (Zea mays L.) in the Philippines. Pest Manag Sci. 2013;69:792–801. https://doi.org/10.1002/ps.3471

Article  PubMed  CAS  Google Scholar 

Li J, Coates BS, Kim KS, Bourguet D, Ponsard S, He K, et al. The genetic structure of Asian corn borer, Ostrinia furnacalis, populations in China: haplotype variance in northern populations and potential impact on management of resistance to transgenic maize. J Hered. 2014;105:642–55. https://doi.org/10.1093/jhered/esu036

Article  PubMed  CAS  Google Scholar 

Nafus DM, Schreiner IH. Review of the biology and control of the Asian corn borer, Ostrinia furnacalis (Lep: Pyralidae). Tropical Pest Manag. 1991;37:41–56. https://doi.org/10.1080/09670879109371535

Article  Google Scholar 

Liu X, Cooper AMW, Yu Z, Silver K, Zhang J, Zhu KY. Progress and prospects of arthropod chitin pathways and structures as targets for pest management. Pestic Biochem Physiol. 2019;161:33–46. https://doi.org/10.1016/j.pestbp.2019.08.002

Article  PubMed  CAS  Google Scholar 

Adrangi S, Faramarzi MA. From bacteria to human: a journey into the world of chitinases. Biotechnol Adv. 2013;31:1786–95. https://doi.org/10.1016/j.biotechadv.2013.09.012

Article  PubMed  CAS  Google Scholar 

Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE. Physicochemical properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem. 2005;53:3888–94. https://doi.org/10.1007/s11483-014-9378-8

Article  PubMed  CAS  Google Scholar 

Muthukrishnan S, Arakane Y, Noh MY, Mun S, Merzendorfer H, Boehringer C et al. Chapter one - chitin in insect cuticle. In: Sugumaran M, editor. Advances in Insect Physiology. Academic Press; 2022. p. 1-110

Yu A, Beck M, Merzendorfer H, Yang Q. Advances in understanding insect chitin biosynthesis. Insect Biochem Mol Biol. 2024;164:104058 https://doi.org/10.1016/j.ibmb.2023.104058

Article  PubMed  CAS  Google Scholar 

Merzendorfer H, Kelkenberg M, Muthukrishnan S Peritrophic matrices. In: Cohen E, Moussian B, editors. Extracellular Composite Matrices in Arthropods. Cham: Springer International Publishing; 2016. p. 255-324

Rabadiya D, Behr M. The biology of insect chitinases and their roles at chitinous cuticles. Insect Biochem Mol Biol. 2024;165:104071 https://doi.org/10.1016/j.ibmb.2024.104071

Article  PubMed  CAS  Google Scholar 

Han L-H, An Y-F. Performance of concrete-encased CFST stub columns under axial compression. J Constr Steel Res. 2014;93:62–76. https://doi.org/10.1016/j.jcsr.2013.10.019

Article  Google Scholar 

Yuan P, Jiang X, Wang S, Shao X, Yang Q, Qian X. X-ray structure and molecular docking guided discovery of novel chitinase inhibitors with a scaffold of dipyridopyrimidine-3-carboxamide. J Agric Food Chem. 2020;68:13584–93. https://doi.org/10.1021/acs.jafc.0c03742

Article  PubMed  CAS  Google Scholar 

Chen W, Jiang X, Yang Q. Glycoside hydrolase family 18 chitinases: the known and the unknown. Biotechnol Adv. 2020;43:107553 https://doi.org/10.1016/j.biotechadv.2020.107553

Article  PubMed  CAS  Google Scholar 

Qu M-B, Sun S-P, Liu Y-S, Deng X-R, Yang J, Yang Q. Insect group II chitinase OfChtII promotes chitin degradation during larva–pupa molting. Insect Sci. 2021;28:692–704. https://doi.org/10.1111/1744-7917.12791

Article  PubMed  CAS  Google Scholar 

Daimon T, Hamada K, Mita K, Okano K, Suzuki MG, Kobayashi M, et al. A bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem Mol Biol. 2003;33:749–59. https://doi.org/10.1016/S0965-1748(03)00084-5

Article  PubMed  CAS  Google Scholar 

Liu T, Chen L, Zhou Y, Jiang X, Duan Y, Yang Q. Structure, catalysis, and inhibition of OfChi-h, the lepidoptera-exclusive insect chitinase*. J Biol Chem. 2017;292:2080–8. https://doi.org/10.1074/jbc.M116.755330

Article  PubMed  PubMed Central  CAS  Google Scholar 

Daimon T, Katsuma S, Iwanaga M, Kang W, Shimada T. The BmChi-h gene, a bacterial-type chitinase gene of Bombyx mori, encodes a functional exochitinase that plays a role in the chitin degradation during the molting process. Insect Biochem Mol Biol. 2005;35:1112–23. https://doi.org/10.1016/j.ibmb.2005.05.005

Article  PubMed  CAS  Google Scholar 

Zou R, Li X, Jiang X, Shi D, Han Q, Duan H, et al. Novel butenolide derivatives as dual-chitinase inhibitors to arrest the growth and development of the Asian corn borer. J Agric Food Chem. 2024;72:5036–46. https://doi.org/10.1021/acs.jafc.3c06714

Article  PubMed  CAS  Google Scholar 

Zhu L, Chen L, Shao X, Cheng J, Yang Q, Qian X. Novel inhibitors of an insect pest chitinase: design and optimization of 9-O-aromatic and heterocyclic esters of berberine. J Agric Food Chem. 2021;69:7526–33. https://doi.org/10.1021/acs.jafc.0c07401

Article  PubMed  CAS  Google Scholar 

Chen L, Zhu L, Chen J, Chen W, Qian X, Yang Q. Crystal structure-guided design of berberine-based novel chitinase inhibitors. J Enzyme Inhib Med Chem. 2020;35:1937–43. https://doi.org/10.1080/14756366.2020.1837123

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huang H, Hua X, Liu N, Li X, Liu S, Chen X, et al. Anacardic acid induces cell apoptosis associated with induction of ATF4-dependent endoplasmic reticulum stress. Toxicol Lett. 2014;228:170–8. https://doi.org/10.1016/j.toxlet.2014.05.012

Article  PubMed  CAS  Google Scholar 

Rajamanikyam M, Vadlapudi V, Parvathaneni SP, Koude DD, Upadhyayula SM. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest. EXCLI J. 2017;16:375–87.

PubMed  PubMed Central  Google Scholar 

He DC, Jiang X, Yang Q. Dual-targeted natural product inhibitors of Ostrinia furnacalis chitinases and inhibitory mechanisms. Chin J Pestic Sci. 2022;24:1171–8. https://doi.org/10.16801/j.issn.1008-7303.2022.0044

Article  Google Scholar 

Han Q, Wu N, Li H-L, Zhang J-Y, Li X, Deng M-F, et al. A piperine-based scaffold as a novel starting point to develop inhibitors against the potent molecular target OfChtI. J Agric Food Chem. 2021;69:7534–44. https://doi.org/10.1021/acs.jafc.0c08119

Article  PubMed  CAS  Google Scholar 

Han Q, Wu N, Liu Y-Y, Zhang J-Y, Zhang R-L, Li H-L, et al. Piperonyl-tethered rhodanine derivatives potently inhibit chitinolytic enzymes of Ostrinia furnacalis. J Agric Food Chem. 2022;70:7387–99. https://doi.org/10.1021/acs.jafc.2c02091

Article  PubMed  CAS  Google Scholar 

Han Q, Wu N, Zhang J, Feng T, Zi Y, Zhang R, et al. Discovery of rhodanine inhibitors targeting of chti based on the π-stacking effect and aqueous solubility. J Agric Food Chem. 2023;71:18685–95. https://doi.org/10.1021/acs.jafc.3c05287

Article  PubMed  CAS  Google Scholar 

Bolchi C, Bavo F, Appiani R, Roda G, Pallavicini M. 1,4-benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: a review of its recent applications in drug design. Eur J Med Chem. 2020;200:112419 https://doi.org/10.1016/j.ejmech.2020.112419

Article  PubMed  CAS  Google Scholar 

Shehzad MT, Khan A, Islam M, Hameed A, Khiat M, Halim SA, et al. Synthesis and urease inhibitory activity of 1,4-benzodioxane-based thiosemicarbazones: biochemical and computational approach. J Mol Struct. 2020;1209:127922 https://doi.org/10.1016/j.molstruc.2020.127922

Article  CAS  Google Scholar 

Pilkington LI, Wagoner J, Polyak SJ, Barker D. Enantioselective synthesis, stereochemical correction, and biological investigation of the rodgersinine family of 1,4-benzodioxane neolignans. Org Lett. 2015;17:1046–9. https://doi.org/10.1021/acs.orglett.5b00189

Article  PubMed  CAS  Google Scholar 

Chen Y-C, Cheng M-J, Lee S-J, Dixit AK, Ishikawa T, Tsai I-L, et al. Coumarinolignans from the Root of Formosan Antidesma pentandrum var. barbatum. Helvetica Chim Acta. 2004;87:2805–11. https://doi.org/10.1002/hlca.200490251

Article  CAS 

Comments (0)

No login
gif