A multicenter cross-sectional study of gambling disorder among patients with methamphetamine use disorder in drug rehabilitation centers: prevalence, correlates, and network analysis

Lorains FK, Cowlishaw S, Thomas SA. Prevalence of comorbid disorders in problem and pathological gambling: systematic review and meta-analysis of population surveys. Addiction. 2011;106(3):490–8.

Article  PubMed  Google Scholar 

Grant JE, Chamberlain SR. Gambling and substance use: comorbidity and treatment implications. Prog Neuropsychopharmacol Biol Psychiatry. 2020;20(99): 109852.

Article  Google Scholar 

Grant JE, Chamberlain SR. Gambling disorder and its relationship with substance use disorders: implications for nosological revisions and treatment. Am J Addict. 2015;24(2):126–31.

Article  PubMed  Google Scholar 

Allami Y, Hodgins DC, Young M, Brunelle N, Currie S, Dufour M, et al. A meta-analysis of problem gambling risk factors in the general adult population. Addiction. 2021;116(11):2968–77.

Article  PubMed  PubMed Central  Google Scholar 

Lane SP, Sher KJ. Limits of current approaches to diagnosis severity based on criterion counts: an example with dsm-5 alcohol use disorder. Clin Psychol Sci. 2015;3(6):819–35.

Article  PubMed  Google Scholar 

Fried EI, Nesse RM. Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential. BMC Med. 2015;6(13):72.

Article  Google Scholar 

Fonseca-Pedrero E. Network analysis: a new way of understanding psychopathology? Revista de Psiquiatría y Salud Mental. 2017;10(4):206–15.

Article  PubMed  Google Scholar 

Borsboom D, Cramer AOJ. Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol. 2013;9(1):91–121.

Article  PubMed  Google Scholar 

Robinaugh DJ, Hoekstra RHA, Toner ER, Borsboom D. The network approach to psychopathology: a review of the literature 2008–2018 and an agenda for future research. Psychol Med. 2020;50(3):353–66.

Article  PubMed  Google Scholar 

Castro D, Ferreira F, de Castro I, Rodrigues AR, Correia M, Ribeiro J, et al. The differential role of central and bridge symptoms in deactivating psychopathological networks. Front Psychol. 2019;1(10):2448.

Article  Google Scholar 

Chen C, Wang L, Cao C, Li G. Psychopathological network theory, methods and challenges. Adv Psychol Sci. 2021;29(10):1724.

Article  Google Scholar 

Peng P, Chen S, Hao Y, He L, Wang Q, Zhou Y, et al. Network of burnout, depression, anxiety, and dropout intention in medical undergraduates. Int J Soc Psychiatry. 2023;24:00207640231166629.

Google Scholar 

Peng P, Liang M, Wang Q, Lu L, Wu Q, Chen Q. Night shifts, insomnia, anxiety, and depression among Chinese nurses during the COVID-19 pandemic remission period: a network approach. Front Public Health. 2022;10:1040298.

Article  PubMed  PubMed Central  Google Scholar 

An Y, Shi J, Chuan-Peng H, Wu X. The symptom structure of posttraumatic stress disorder and co-morbid depression among college students with childhood abuse experience: a network analysis. J Affect Disord. 2021;1(293):466–75.

Article  Google Scholar 

Kaiser T, Herzog P, Voderholzer U, Brakemeier E. Unraveling the comorbidity of depression and anxiety in a large inpatient sample: Network analysis to examine bridge symptoms. Depress Anxiety. 2021;38(3):307–17.

Article  PubMed  Google Scholar 

Rutten RJT, Broekman TG, Schippers GM, Schellekens AFA. Symptom networks in patients with substance use disorders. Drug Alcohol Depend. 2021;229(Pt B): 109080.

Article  PubMed  Google Scholar 

Baggio S, Sapin M, Khazaal Y, Studer J, Wolff H, Gmel G. Comorbidity of symptoms of alcohol and cannabis use disorders among a population-based sample of simultaneous users insight from a network perspective. Int J Environ Res Public Health. 2018;15(12):2893.

Article  PubMed  PubMed Central  Google Scholar 

Rhemtulla M, Fried EI, Aggen SH, Tuerlinckx F, Kendler KS, Borsboom D. Network analysis of substance abuse and dependence symptoms. Drug Alcohol Depend. 2016;1(161):230–7.

Article  Google Scholar 

Liu D, Lemmens J, Hong X, Li B, Hao J, Yue Y. A network analysis of internet gaming disorder symptoms. Psychiatry Res. 2022;1(311): 114507.

Article  Google Scholar 

Granero R, Fernández-Aranda F, Demetrovics Z, Lara-Huallipe M, Morón-Fernández A, Jiménez-Murcia S. Network analysis of the structure of the core symptoms and clinical correlates in comorbid schizophrenia and gambling disorder. Int J Ment Health Addict. 2022;27:1–27.

Google Scholar 

Mestre-Bach G, Granero R, Fernández-Aranda F, Potenza MN, Jiménez-Murcia S. Roles for alexithymia, emotion dysregulation and personality features in gambling disorder: a network analysis. J Gambl Stud. 2022;39(3):1207–23.

Article  PubMed  Google Scholar 

Yuan GF, Shi W, Elhai JD, Montag C, Chang K, Jackson T, et al. Gaming to cope: applying network analysis to understand the relationship between posttraumatic stress symptoms and internet gaming disorder symptoms among disaster-exposed Chinese young adults. Addictive Behav. 2022;124:107096.

Article  Google Scholar 

Zhang B, Yan X, Li Y, Zhu H, Lu Z, Jia Z. Trends in methamphetamine use in the Mainland of China, 2006–2015. Front Public Health. 2022;10: 852837.

Article  PubMed  PubMed Central  Google Scholar 

Paulus MP, Stewart JL. Neurobiology, clinical presentation, and treatment of methamphetamine use disorder: a review. JAMA Psychiat. 2020;77(9):959–66.

Article  Google Scholar 

Dong H, Shen Y, Hao W. Assessing the mediating role of impulsivity between methamphetamine-induced psychotic disorders and increased gambling severity in methamphetamine-dependent individuals. Eur Arch Psychiatry Clin Neurosci. 2021. https://doi.org/10.1007/s00406-021-01320-5.

Article  PubMed  Google Scholar 

Lin SK, Ball D, Hsiao CC, Chiang YL, Ree SC, Chen CK. Psychiatric comorbidity and gender differences of persons incarcerated for methamphetamine abuse in Taiwan. Psychiatry Clin Neurosci. 2004;58(2):206–12.

Article  PubMed  Google Scholar 

Wang Y, Zuo J, Hao W, Wu L, Liu F, Wang Q, et al. Relationships between impulsivity, methamphetamine use disorder and gambling disorder. J Gambl Stud. 2023;39(4):1635–50.

Article  PubMed  Google Scholar 

Kim HS, Tabri N, Hodgins DC. A 5-year longitudinal examination of the co-occurring patterns of gambling and other addictive behaviors. Addict Behav. 2024;1(149): 107894.

Article  Google Scholar 

Burger J, Isvoranu AM, Lunansky G, Haslbeck JMB, Epskamp S, Hoekstra RHA, et al. Reporting standards for psychological network analyses in cross-sectional data. Psychol Methods. 2022. https://doi.org/10.1037/met0000471.

Article  PubMed  Google Scholar 

Hasin DS, O’Brien CP, Auriacombe M, Borges G, Bucholz K, Budney A, et al. DSM-5 criteria for substance use disorders: recommendations and rationale. Am J Psychiatry. 2013;170(8):834–51.

Article  PubMed  PubMed Central  Google Scholar 

American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Association: Virginia; 2013. https://doi.org/10.1176/appi.books.9780890425596.

Book  Google Scholar 

Yang BZ, Wang LJ, Huang MC, Wang SC, Tsai MC, Huang YC, et al. Diagnostic reliability and validity of the semi-structured assessment for drug dependence and alcoholism (SSADDA) Chinese version. Complex Psychiatry. 2021;6(3–4):62–7.

PubMed  Google Scholar 

Ma YJ, Wang YY, Liu MQ, Fang T, Wei ZR, Chen SB, et al. Reliability and validity of DSM-IV and DSM-5 methamphetamine use disorder diagnoses using the Chinese version of the semi-structured assessment for drug dependence and alcoholism (SSADDA). Drug Alcohol Depend. 2021;229(Pt B): 109047.

Article  CAS  PubMed  Google Scholar 

R Core Team. R: A language and environment for statistical computing. R foundation for statistical computing; 2021. https://www.R-project.org/

Jones P. networktools: tools for network analysis. 2021. https://cran.r-project.org/web/packages/networktools/index.html

Jones PJ, Mair P, McNally RJ. Visualizing psychological networks: a tutorial in R. Front Psychol. 2018;19(9):1742.

Article  Google Scholar 

van Borkulo CD, Borsboom D, Epskamp S, Blanken TF, Boschloo L, Schoevers RA, et al. A new method for constructing networks from binary data. Sci Rep. 2014;4(1):5918.

Article  PubMed  PubMed Central  Google Scholar 

Epskamp S, Borsboom D, Fried EI. Estimating psychological networks and their accuracy: a tutorial paper. Behav Res. 2018;50(1):195–212.

Article  Google Scholar 

McInerney AM, Lindekilde N, Nouwen A, Schmitz N, Deschênes SS. Diabetes distress, depressive symptoms, and anxiety symptoms in people with type 2 diabetes: a network analysis approach to understanding comorbidity. Diabetes Care. 2022;dc212297.

Bai W, Xi HT, Zhu Q, Ji M, Zhang H, Yang BX, et al. Network analysis of anxiety and depressive symptoms among nursing students during the COVID-19 pandemic. J Affect Disord. 2021;1(294):753–60.

Comments (0)

No login
gif