Dickter J, Logan C, Taplitz R. Neutropenia and antibiotics: when, what, how and why? Curr Opin Infect Dis. 2023;36:218–27. https://doi.org/10.1097/QCO.0000000000000932.
Article CAS PubMed Google Scholar
Cossey J, Cote MCB. Evaluation and management of febrile neutropenia in patients with cancer. JAAPA. 2024;37:16–20. https://doi.org/10.1097/01.jaa.0000000000000054.
Nabhan AF, Allam NE, Hamed Abdel-Aziz Salama M. Routes of administration of antibiotic prophylaxis for preventing infection after caesarean section. Cochrane Database Syst Rev. 2016;2016:011876. https://doi.org/10.1002/14651858.cd011876.pub2.
Subramanian AK. Antimicrobial prophylaxis regimens following transplantation. Curr Opin Infect Dis. 2011;24:344–9. https://doi.org/10.1097/qco.0b013e328348b379.
Article CAS PubMed Google Scholar
GBD 2021 Antimicrobial resistance collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404:1199–226. https://doi.org/10.1016/S0140-6736(24)01867-1.
Global antimicrobial resistance and use surveillance system (GLASS) report: 2022: Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to Prevent and Control Antimicrobial Resistance. 1st ed. Geneva: World Health Organization; 2022.
Stockwell VO, Duffy B. Use of antibiotics in plant agriculture. Rev Sci Tech. 2012;31:199–210. https://doi.org/10.20506/rst.31.1.2104.
Article CAS PubMed Google Scholar
2023 Antibacterial agents in clinical and preclinical development: an overview and analysis. 1st ed. Geneva: World Health Organization; 2024.
O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf. Accessed 6 Sept 2024.
WHO Bacterial Priority Pathogens List 2024: Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to Prevent and Control Antimicrobial Resistance. 1st ed. Geneva: World Health Organization; 2024.
Alm RA, Gallant K. Innovation in antimicrobial resistance: the CARB-X perspective. ACS Infect Dis. 2020;6:1317–22. https://doi.org/10.1021/acsinfecdis.0c00026.
Article CAS PubMed Google Scholar
Alt S, Haggstrom D, Kessmann H, Kloss F, Schneider CE, Jäger T, et al. INCATE: a partnership to boost the antibiotic pipeline. Nat Rev Drug Discov. 2022;21:621–2. https://doi.org/10.1038/d41573-022-00138-7.
Article CAS PubMed Google Scholar
Engel A. Fostering antibiotic development through impact funding. ACS Infect Dis. 2020;6:1311–2. https://doi.org/10.1021/acsinfecdis.0c00069.
Article CAS PubMed Google Scholar
McCall B. New fund stimulates the ailing antibiotic pipeline. Lancet Infect Dis. 2020;20:1017. https://doi.org/10.1016/S1473-3099(20)30629-0.
Article CAS PubMed PubMed Central Google Scholar
Mullard A. Pharmaceutical firms commit US$1 billion to antibiotic development. Nat Rev Drug Discov. 2020;19:575–6. https://doi.org/10.1038/d41573-020-00143-8.
Article CAS PubMed Google Scholar
Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo). 2023;76:431–73. https://doi.org/10.1038/s41429-023-00629-8.
Article CAS PubMed Google Scholar
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A review of antibacterial candidates with new modes of action. ACS Infect Dis. 2024. https://doi.org/10.1021/acsinfecdis.4c00218.
Article PubMed PubMed Central Google Scholar
Global AMR R&D Hub. Dynamic Dashboard: Antibacterials In Clinical Development. 2022. https://dashboard.globalamrhub.org/reports/pipelines/pipelines. Accessed 6 Sept 2024.
Higgins NP. Gyrase. In: Brenner's Encyclopedia of Genetics. Elsevier; 2013. p. 374–377. https://doi.org/10.1016/B978-0-12-374984-0.00670-7.
Stone MD, Bryant Z, Crisona NJ, Smith SB, Vologodskii A, Bustamante C, Cozzarelli NR. Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc Natl Acad Sci USA. 2003;100:8654–9. https://doi.org/10.1073/pnas.1133178100.
Article CAS PubMed PubMed Central Google Scholar
Helgesen E, Sætre F, Skarstad K. Topoisomerase IV tracks behind the replication fork and the SeqA complex during DNA replication in Escherichia coli. Sci Rep. 2021;11:474. https://doi.org/10.1038/s41598-020-80043-4.
Article CAS PubMed PubMed Central Google Scholar
Wang SC, Shapiro L. The topoisomerase IV ParC subunit colocalizes with the Caulobacter replisome and is required for polar localization of replication origins. Proc Natl Acad Sci USA. 2004;101:9251–6. https://doi.org/10.1073/pnas.0402567101.
Article CAS PubMed PubMed Central Google Scholar
Spencer AC, Panda SS. DNA gyrase as a target for quinolones. Biomedicines. 2023. https://doi.org/10.3390/biomedicines11020371.
Article PubMed PubMed Central Google Scholar
Veselkov DA, Laponogov I, Pan X-S, Selvarajah J, Skamrova GB, Branstrom A, et al. Structure of a quinolone-stabilized cleavage complex of topoisomerase IV from Klebsiella pneumoniae and comparison with a related Streptococcus pneumoniae complex. Acta Crystallogr D Struct Biol. 2016;72:488–96. https://doi.org/10.1107/S2059798316001212.
Article CAS PubMed PubMed Central Google Scholar
Bellon S, Parsons JD, Wei Y, Hayakawa K, Swenson LL, Charifson PS, et al. Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Antimicrob Agents Chemother. 2004;48:1856–64. https://doi.org/10.1128/aac.48.5.1856-1864.2004.
Article CAS PubMed PubMed Central Google Scholar
Maxwell A, Lawson DM. The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr Top Med Chem. 2003;3:283–303. https://doi.org/10.2174/1568026033452500.
Article CAS PubMed Google Scholar
Federal Register. Determination That ALBAMYCIN (Novobiocin Sodium) Capsule, 250 Milligrams, Was Withdrawn From Sale for Reasons of Safety or Effectiveness. 2011. https://www.federalregister.gov/documents/2011/01/19/2011-1000/determination-that-albamycin-novobiocin-sodium-capsule-250-milligrams-was-withdrawn-from-sale-for. Accessed 6 Sept 2024.
Collin F, Karkare S, Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol. 2011;92:479–97. https://doi.org/10.1007/s00253-011-3557-z.
Article CAS PubMed PubMed Central Google Scholar
Anderson VE, Osheroff N. Type II topoisomerases as targets for quinolone antibacterials: turning Dr. Jekyll into Mr. Hyde. Curr Pharm Des. 2001;7:337–53. https://doi.org/10.2174/1381612013398013.
Oviatt AA, Gibson EG, Huang J, Mattern K, Neuman KC, Chan PF, Osheroff N. Interactions between gepotidacin and Escherichia coli gyrase and topoisomerase IV: genetic and biochemical evidence for well-balanced dual-targeting. ACS Infect Dis. 2024;10:1137–51. https://doi.org/10.1021/acsinfecdis.3c00346.
Article CAS PubMed PubMed Central Google Scholar
Kokot M, Weiss M, Zdovc I, Hrast M, Anderluh M, Minovski N. Structurally optimized potent dual-targeting NBTI antibacterials with an enhanced bifurcated halogen-bonding propensity. ACS Med Chem Lett. 2021;12:1478–85. https://doi.org/10.1021/acsmedchemlett.1c00345.
Article CAS PubMed PubMed Central Google Scholar
Chan PF, Srikannathasan V, Huang J, Cui H, Fosberry AP, Gu M, et al. Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin. Nat Commun. 2015;6:10048. https://doi.org/10.1038/ncomms10048.
Article CAS PubMed Google Scholar
Morgan H, Lipka-Lloyd M, Warren AJ, Hughes N, Holmes J, Burton NP, et al. A 2.8 Å structure of zoliflodacin in a DNA cleavage complex with Staphylococcus aureus DNA gyrase. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24021634.
Article PubMed PubMed Central Google Scholar
Gibson EG, Bax B, Chan PF, Osheroff N. Mechanistic and structural basis for the actions of the antibacterial gepotidacin against staphylococcus aureus gyrase. ACS Infect Dis. 2019;5:570–81. https://doi.org/10.1021/acsinfecdis.8b00315.
Comments (0)