Adamude FA, Dingwoke EJ, Abubakar MS, Mohamed G, Klein A, Sallau AB (2023) Comparative venom toxin analyses of Nigerian viperidae and elapidae snakes. Sci Afr 20:e01622. https://doi.org/10.1016/j.sciaf.2023.e01622
Adrião AA, Dos Santos AO, de Lima EJ, Maciel JB, Paz WH, da Silva FM et al (2022) Plant-derived toxin inhibitors as potential candidates to complement antivenom treatment in snakebite envenomations. Front Immunol 13:842576. https://doi.org/10.3389/fimmu.2022.842576
Article CAS PubMed PubMed Central Google Scholar
Ahmadi S, Benard-Valle M, Boddum K, Cardoso FC, King GF, Laustsen AH, Ljungars A (2023) From squid giant axon to automated patch-clamp: electrophysiology in venom and antivenom research. Front Pharmacol 14:1249336. https://doi.org/10.3389/fphar.2023.1249336
Article CAS PubMed PubMed Central Google Scholar
Al Haidar IK, Chowdhury MAW, Miah M, Hasan M, Sohan MSR, Noman M et al (2024) Toxins profiles, toxicological properties, and histological alteration potentiality of Trimeresurus erythrurus venom: in vitro and in vivo experiments. J King Saud Univ Sci 36(5):103150. https://doi.org/10.1016/j.jksus.2024.103150
Al Solaiss J (2019) Characterisation of the pathophysiological and immunological responses to snake venom proteins: avenues to designing and testing novel therapies. The University of Liverpool, United Kingdom
Albulescu LO, Xie C, Ainsworth S, Alsolaiss J, Crittenden E, Dawson CA et al (2020) A therapeutic combination of two small molecule toxin inhibitors provides broad preclinical efficacy against viper snakebite. Nat Commun 11(1):6094. https://doi.org/10.1038/s41467-020-19981-6
Article CAS PubMed PubMed Central Google Scholar
Alomran N, Blundell P, Alsolaiss J, Crittenden E, Ainsworth S, Dawson CA et al (2022) Exploring the utility of recombinant snake venom serine protease toxins as immunogens for generating experimental snakebite antivenoms. Toxins 14(7):443. https://doi.org/10.3390/toxins14070443
Article CAS PubMed PubMed Central Google Scholar
Alonso LL, Slagboom J, Casewell NR, Samanipour S, Kool J (2023) Metabolome-based classification of snake venoms by bioinformatic tools. Toxins 15(2):161. https://doi.org/10.3390/toxins15020161
Article CAS PubMed PubMed Central Google Scholar
Aly SH, El-Shazly M, Eldahshan OA (2024) Antidotes to reptile toxins chemical composition of snake venoms; toxic effects of snake venom. Antidotes to toxins and drugs. Elsevier, Amsterdam, pp 71–97
Amorim FG, Menaldo DL, Carone SE, Silva TA, Sartim MA, De Pauw E et al (2018) New insights on moojase, a thrombin-like serine protease from Bothrops moojeni snake venom. Toxins 10(12):500. https://doi.org/10.3390/toxins10120500
Article CAS PubMed PubMed Central Google Scholar
Ande SR, Kommoju PR, Draxl S, Murkovic M, Macheroux P, Ghisla S, Ferrando-May E (2006) Mechanisms of cell death induction by L-amino acid oxidase, a major component of ophidian venom. Apoptosis 11:1439–1451. https://doi.org/10.1007/s10495-006-7959-9
Article CAS PubMed Google Scholar
Aoki-Shioi N, Modahl CM (2019) Snakebite therapeutics based on endogenous inhibitors from vipers. Medical toxicology. IntechOpen, UK
Astudillo AM, Balboa MA, Balsinde J (2019) Selectivity of phospholipid hydrolysis by phospholipase A2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1864(6):772–783. https://doi.org/10.1016/j.bbalip.2018.07.002
Averin AS, Utkin YN (2021) Cardiovascular effects of snake toxins: cardiotoxicity and cardioprotection. Acta Nat 13(3):4. https://doi.org/10.32607/actanaturae.11375
Bedraoui A, Suntravat M, El Mejjad S, Enezari S, Oukkache N, Sanchez EE et al (2023) Therapeutic potential of snake venom: toxin distribution and opportunities in deep learning for novel drug discovery. Med Drug Discov 21:100175. https://doi.org/10.1016/j.medidd.2023.100175
Bekbossynova A, Zharylgap A, Filchakova O (2021) Venom-derived neurotoxins targeting nicotinic acetylcholine receptors. Molecules 26(11):3373. https://doi.org/10.3390/molecules26113373
Article CAS PubMed PubMed Central Google Scholar
Berger M, Vieira MAR, Guimaraes JA (2012) Acute kidney injury induced by snake and arthropod venoms. Renal failure—the facts. InTech, UK, pp 157–186
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ (2024) Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 7(1):358. https://doi.org/10.1038/s42003-024-06019-6
Article CAS PubMed PubMed Central Google Scholar
Boldrini-França J, Pinheiro-Junior EL, Peigneur S, Pucca MB, Cerni FA, Borges RJ et al (2020) Beyond hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor activities. Sci Rep 10(1):4476. https://doi.org/10.1038/s41598-020-61258-x
Article CAS PubMed PubMed Central Google Scholar
Calvete JJ (2011) Proteomics in venom research: a focus on PLA 2 molecules. Acta Chim Slov 58(4):629–637
Calvete JJ, Lomonte B, Saviola AJ, Calderón Celis F, Ruiz Encinar J (2024) Quantification of snake venom proteomes by mass spectrometry-considerations and perspectives. Mass Spectrom Rev 43(5):977–997. https://doi.org/10.1002/mas.21850
Article CAS PubMed Google Scholar
Cavecci-Mendonça B, Luciano KM, Vaccas T, de Oliveira LA, Clemente EF, Rossini BC et al (2023) Preliminary insights of Brazilian snake venom metalloproteomics. Toxins 15(11):648. https://doi.org/10.3390/toxins15110648
Article CAS PubMed PubMed Central Google Scholar
Cedro RC, Menaldo DL, Costa TR, Zoccal KF, Sartim MA, Santos-Filho NA et al (2018) Cytotoxic and inflammatory potential of a phospholipase A 2 from Bothrops jararaca snake venom. J Venom Anim Toxins Trop Dis 24:33. https://doi.org/10.1186/s40409-018-0170-y
Chen N, Wang S, Ye J, Zhang L, Wang H, Ye S et al (2023) Investigating the clinical value of novel kidney injury inflammatory biomarkers in snakebite victims. Archiv Espanol Urol 76(6):467–474. https://doi.org/10.56434/j.arch.esp.urol.20237606.57
Clish CB (2015) Metabolomics: an emerging but powerful tool for precision medicine. Mol Case Stud 1(1):a000588. https://doi.org/10.1101/mcs.a000588
Clissa PB, Della-Casa MS, Zychar BC, Sanabani SS (2024) The role of snake venom disintegrins in angiogenesis. Toxins 16(3):127. https://doi.org/10.3390/toxins16030127
Article CAS PubMed PubMed Central Google Scholar
Costa TR, Burin SM, Menaldo DL, de Castro FA, Sampaio SV (2014) Snake venom L-amino acid oxidases: an overview on their antitumor effects. J Venom Anim Toxins Trop Dis 20:01–07. https://doi.org/10.1186/1678-9199-20-23
Costa SK, Camargo EA, Antunes E (2015) Inflammatory action of secretory PLA2 from snake venoms. Toxins and drug discovery. Springer, Dordrecht, The Netherlands, pp 1–18
Costal-Oliveira F, Stransky S, Guerra-Duarte C, Naves de Souza DL, Vivas-Ruiz DE, Yarlequé A et al (2019) L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes. Sci Rep 9(1):781. https://doi.org/10.1038/s41598-018-37435-4
Article CAS PubMed PubMed Central Google Scholar
da Silva Carvalho É, do Nascimento Souza AR, Melo DFC, de Farias AS, de Oliveira Macedo BB, Sartim MA et al (2024) Photobiomodulation therapy to treat snakebites caused by Bothrops atrox: a randomized clinical trial. JAMA Internal Med 184(1):70–80. https://doi.org/10.1001/jamainternmed.2023.6538
Damm M, Hempel BF, Süssmuth RD (2021) Old World Vipers—a review about snake venom proteomics of Viperinae and their variations. Toxins 13(6):427. https://doi.org/10.3390/toxins13060427
Comments (0)