Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem. 2012;81:767–93. https://doi.org/10.1146/annurev-biochem-072909-095555.
Article PubMed PubMed Central CAS Google Scholar
Laybutt DR, Preston AM, Akerfeldt MC, et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia. 2007;50:752–63. https://doi.org/10.1007/s00125-006-0590-z.
Article PubMed CAS Google Scholar
Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J. 2002;365:561–75. https://doi.org/10.1042/BJ20020508.
Article PubMed PubMed Central CAS Google Scholar
Lekstrom-Himes J, Xanthopoulos KG. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem. 1998;273:28545–8. https://doi.org/10.1074/jbc.273.44.28545.
Article PubMed CAS Google Scholar
Matsuda T, Kido Y, Asahara S, et al. Ablation of C/EBPβ alleviates ER stress and pancreatic β cell failure through the GRP78 chaperone in mice. J Clin Invest. 2010;120:115–26. https://doi.org/10.1172/JCI39721.
Article PubMed CAS Google Scholar
Rose MD, Misra LM, Vogel JP. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell. 1989;57:1211–21. https://doi.org/10.1016/0092-8674(89)90058-5.
Article PubMed CAS Google Scholar
Ishikawa T, Okada T, Ishikawa-Fujiwara T, et al. ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish. Mol Biol Cell. 2013;24:1387–95. https://doi.org/10.1091/mbc.E12-11-0830.
Article PubMed PubMed Central CAS Google Scholar
Mizukami H, Takahashi K, Inaba W, et al. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care. 2014;37:1966–74. https://doi.org/10.2337/dc13-2018.
Article PubMed CAS Google Scholar
Shimizu S, Hosooka T, Matsuda T, et al. DPP4 inhibitor vildagliptin preserves β-cell mass through amelioration of endoplasmic reticulum stress in C/EBPβ transgenic mice. J Mol Endocrinol. 2012;49:125–35. https://doi.org/10.1530/JME-12-0039.
Article PubMed CAS Google Scholar
Takai T, Matsuda T, Matsuura Y, et al. Casein kinase 2 phosphorylates and stabilizes C/EBPβ in pancreatic β cells. Biochem Biophys Res Commun. 2018;497:451–6. https://doi.org/10.1016/j.bbrc.2018.02.108.
Article PubMed CAS Google Scholar
Montenarh M. Cellular regulators of protein kinase CK2. Cell Tissue Res. 2010;342:139–46. https://doi.org/10.1007/s00441-010-1068-3.
Article PubMed CAS Google Scholar
Keller DM, Lu H. p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem. 2002;277:50206–13. https://doi.org/10.1074/jbc.M209820200.
Article PubMed CAS Google Scholar
Yang FM, Chang HM, Yeh ETH. Regulation of TLR4 signaling through the TRAF6/sNASP axis by reversible phosphorylation mediated by CK2 and PP4. Proc Natl Acad Sci U S A. 2021;118: e210744118. https://doi.org/10.1073/pnas.2107044118.
Olsen BB, Issinger OG, Guerra B. Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene. 2010;29:6016–26. https://doi.org/10.1038/onc.2010.337.
Article PubMed CAS Google Scholar
Montenarh M. Protein kinase CK2 in DNA damage and repair. Transl Cancer Res. 2016;5:49–63.
Manni S, Brancalion A, Tubi LQ, Colpo A, et al. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clin Cancer Res. 2012;18:1888–900. https://doi.org/10.1158/1078-0432.CCR-11-1789.
Article PubMed CAS Google Scholar
Buontempo F, Orsini E, Martins LR, et al. Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling. Leukemia. 2014;28:543–53. https://doi.org/10.1038/leu.2013.349.
Article PubMed CAS Google Scholar
Hessenauer A, Schneider CC, Götz C, et al. CK2 inhibition induces apoptosis via the ER stress response. Cell Signal. 2011;23:145–51. https://doi.org/10.1016/j.cellsig.2010.08.014.
Article PubMed CAS Google Scholar
Sharma RB, Landa-Galván HV, Alonso LC. Living dangerously: protective and harmful ER stress responses in pancreatic beta-cells. Diabetes. 2021;70:2431–43. https://doi.org/10.2337/dbi20-0033.
Article PubMed PubMed Central CAS Google Scholar
Meyerovich K, Ortis F, Allagnat F, et al. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol. 2016;57:R1–17. https://doi.org/10.1530/JME-15-0306.
Article PubMed CAS Google Scholar
Wu YJ, Guo X, Li CJ, et al. Dipeptidyl peptidase-4 inhibitor, vildagliptin, inhibits pancreatic beta cell apoptosis in association with its effects suppressing endoplasmic reticulum stress in db/db mice. Metabolism. 2015;64:226–35. https://doi.org/10.1016/j.metabol.2014.08.006.
Article PubMed CAS Google Scholar
Imai Y, Soda M, Inoue H, et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell. 2001;105:891–902. https://doi.org/10.1016/s0092-8674(01)00407-x.
Article PubMed CAS Google Scholar
Kaneko M, Koike H, Saito R, et al. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J Neurosci. 2010;30:3924–32. https://doi.org/10.1523/JNEUROSCI.2422-09.2010.
Article PubMed PubMed Central CAS Google Scholar
Van Dijk FS, Nesbitt IM, Zwikstra EH, et al. PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet. 2009;85:521–7. https://doi.org/10.1016/j.ajhg.2009.09.001.
Article PubMed PubMed Central CAS Google Scholar
Koyanagi M, Asahara S, Matsuda T, et al. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1. PLoS ONE. 2011;6: e23238. https://doi.org/10.1371/journal.pone.0023238.
Article PubMed PubMed Central CAS Google Scholar
Sano H, Kobayashi K, Yoshioka N, et al. Retrograde gene transfer into neural pathways mediated by adeno-associated virus (AAV)-AAV receptor interaction. J Neurosci Methods. 2020;345: 108887. https://doi.org/10.1016/j.jneumeth.2020.108887.
Article PubMed CAS Google Scholar
Ikushiro H, Nagami A, Takai T, et al. Heme-dependent inactivation of 5-aminolevulinate synthase from Caulobactor crescentus. Sci Rep. 2018;8:14428.
Schwind L, Zimmer AD, Götz C, et al. CK2 phosphorylation of C/EBPδ regulates its transcription factor activity. Int J Biochem Cell Biol. 2015;61:81–9. https://doi.org/10.1016/j.biocel.2015.02.004.
Comments (0)