Protective effect of CK2 against endoplasmic reticulum stress in pancreatic β cells

Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem. 2012;81:767–93. https://doi.org/10.1146/annurev-biochem-072909-095555.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Laybutt DR, Preston AM, Akerfeldt MC, et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia. 2007;50:752–63. https://doi.org/10.1007/s00125-006-0590-z.

Article  PubMed  CAS  Google Scholar 

Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J. 2002;365:561–75. https://doi.org/10.1042/BJ20020508.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lekstrom-Himes J, Xanthopoulos KG. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem. 1998;273:28545–8. https://doi.org/10.1074/jbc.273.44.28545.

Article  PubMed  CAS  Google Scholar 

Matsuda T, Kido Y, Asahara S, et al. Ablation of C/EBPβ alleviates ER stress and pancreatic β cell failure through the GRP78 chaperone in mice. J Clin Invest. 2010;120:115–26. https://doi.org/10.1172/JCI39721.

Article  PubMed  CAS  Google Scholar 

Rose MD, Misra LM, Vogel JP. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell. 1989;57:1211–21. https://doi.org/10.1016/0092-8674(89)90058-5.

Article  PubMed  CAS  Google Scholar 

Ishikawa T, Okada T, Ishikawa-Fujiwara T, et al. ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish. Mol Biol Cell. 2013;24:1387–95. https://doi.org/10.1091/mbc.E12-11-0830.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mizukami H, Takahashi K, Inaba W, et al. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care. 2014;37:1966–74. https://doi.org/10.2337/dc13-2018.

Article  PubMed  CAS  Google Scholar 

Shimizu S, Hosooka T, Matsuda T, et al. DPP4 inhibitor vildagliptin preserves β-cell mass through amelioration of endoplasmic reticulum stress in C/EBPβ transgenic mice. J Mol Endocrinol. 2012;49:125–35. https://doi.org/10.1530/JME-12-0039.

Article  PubMed  CAS  Google Scholar 

Takai T, Matsuda T, Matsuura Y, et al. Casein kinase 2 phosphorylates and stabilizes C/EBPβ in pancreatic β cells. Biochem Biophys Res Commun. 2018;497:451–6. https://doi.org/10.1016/j.bbrc.2018.02.108.

Article  PubMed  CAS  Google Scholar 

Montenarh M. Cellular regulators of protein kinase CK2. Cell Tissue Res. 2010;342:139–46. https://doi.org/10.1007/s00441-010-1068-3.

Article  PubMed  CAS  Google Scholar 

Keller DM, Lu H. p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem. 2002;277:50206–13. https://doi.org/10.1074/jbc.M209820200.

Article  PubMed  CAS  Google Scholar 

Yang FM, Chang HM, Yeh ETH. Regulation of TLR4 signaling through the TRAF6/sNASP axis by reversible phosphorylation mediated by CK2 and PP4. Proc Natl Acad Sci U S A. 2021;118: e210744118. https://doi.org/10.1073/pnas.2107044118.

Article  CAS  Google Scholar 

Olsen BB, Issinger OG, Guerra B. Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene. 2010;29:6016–26. https://doi.org/10.1038/onc.2010.337.

Article  PubMed  CAS  Google Scholar 

Montenarh M. Protein kinase CK2 in DNA damage and repair. Transl Cancer Res. 2016;5:49–63.

CAS  Google Scholar 

Manni S, Brancalion A, Tubi LQ, Colpo A, et al. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clin Cancer Res. 2012;18:1888–900. https://doi.org/10.1158/1078-0432.CCR-11-1789.

Article  PubMed  CAS  Google Scholar 

Buontempo F, Orsini E, Martins LR, et al. Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling. Leukemia. 2014;28:543–53. https://doi.org/10.1038/leu.2013.349.

Article  PubMed  CAS  Google Scholar 

Hessenauer A, Schneider CC, Götz C, et al. CK2 inhibition induces apoptosis via the ER stress response. Cell Signal. 2011;23:145–51. https://doi.org/10.1016/j.cellsig.2010.08.014.

Article  PubMed  CAS  Google Scholar 

Sharma RB, Landa-Galván HV, Alonso LC. Living dangerously: protective and harmful ER stress responses in pancreatic beta-cells. Diabetes. 2021;70:2431–43. https://doi.org/10.2337/dbi20-0033.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Meyerovich K, Ortis F, Allagnat F, et al. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol. 2016;57:R1–17. https://doi.org/10.1530/JME-15-0306.

Article  PubMed  CAS  Google Scholar 

Wu YJ, Guo X, Li CJ, et al. Dipeptidyl peptidase-4 inhibitor, vildagliptin, inhibits pancreatic beta cell apoptosis in association with its effects suppressing endoplasmic reticulum stress in db/db mice. Metabolism. 2015;64:226–35. https://doi.org/10.1016/j.metabol.2014.08.006.

Article  PubMed  CAS  Google Scholar 

Imai Y, Soda M, Inoue H, et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell. 2001;105:891–902. https://doi.org/10.1016/s0092-8674(01)00407-x.

Article  PubMed  CAS  Google Scholar 

Kaneko M, Koike H, Saito R, et al. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J Neurosci. 2010;30:3924–32. https://doi.org/10.1523/JNEUROSCI.2422-09.2010.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Van Dijk FS, Nesbitt IM, Zwikstra EH, et al. PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet. 2009;85:521–7. https://doi.org/10.1016/j.ajhg.2009.09.001.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Koyanagi M, Asahara S, Matsuda T, et al. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1. PLoS ONE. 2011;6: e23238. https://doi.org/10.1371/journal.pone.0023238.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sano H, Kobayashi K, Yoshioka N, et al. Retrograde gene transfer into neural pathways mediated by adeno-associated virus (AAV)-AAV receptor interaction. J Neurosci Methods. 2020;345: 108887. https://doi.org/10.1016/j.jneumeth.2020.108887.

Article  PubMed  CAS  Google Scholar 

Ikushiro H, Nagami A, Takai T, et al. Heme-dependent inactivation of 5-aminolevulinate synthase from Caulobactor crescentus. Sci Rep. 2018;8:14428.

Article  Google Scholar 

Schwind L, Zimmer AD, Götz C, et al. CK2 phosphorylation of C/EBPδ regulates its transcription factor activity. Int J Biochem Cell Biol. 2015;61:81–9. https://doi.org/10.1016/j.biocel.2015.02.004.

Article  PubMed  CAS 

Comments (0)

No login
gif