IDF. IDF Diabetes Atlas, 10th Edition. International Diabetes Federation 2022;
Ma C-X, Ma X-N, Guan C-H, Li Y-D, Mauricio D, Fu S-B. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol. 2022;21(1):74. https://doi.org/10.1186/s12933-022-01516-6.
Article PubMed PubMed Central CAS Google Scholar
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. 2020;17(9):585–607. https://doi.org/10.1038/s41569-020-0339-2.
Article PubMed PubMed Central Google Scholar
Hölscher ME, Bode C, Bugger H. Diabetic cardiomyopathy: does the type of diabetes matter? Int J Mol Sci. 2016;17(12):2136. https://doi.org/10.3390/ijms17122136.
Article PubMed PubMed Central Google Scholar
Reed M, Meszaros K, Entes L, Claypool M, Pinkett J, Gadbois T, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390–4. https://doi.org/10.1053/meta.2000.17721.
Article PubMed CAS Google Scholar
Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: incorporating a high-fat diet and streptozotocin. Biomed Pharmacother. 2017;95:605–13. https://doi.org/10.1016/j.biopha.2017.08.098.
Article PubMed CAS Google Scholar
Zhang Y, Liu D, Long X-X, Fang Q-C, Jia W-P, Li H-T. The role of FGF21 in the pathogenesis of cardiovascular disease. Chin Med J. 2021;134(24):2931–43. https://doi.org/10.1097/CM9.0000000000001890.
Article PubMed PubMed Central CAS Google Scholar
Szczepańska E, Gietka-Czernel M. Fgf21: a novel regulator of glucose and lipid metabolism and whole-body energy balance. Horm Metab Res. 2022;54(04):203–11. https://doi.org/10.1055/a-1778-4159.
Article PubMed CAS Google Scholar
Geng L, Lam KS, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654–67.
Article PubMed CAS Google Scholar
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: an emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Diseases. 2024;11(3): 101064.
Article PubMed CAS Google Scholar
Barb D, Bril F, Kalavalapalli S, Cusi K. Plasma fibroblast growth factor 21 is associated with severity of nonalcoholic steatohepatitis in patients with obesity and type 2 diabetes. J Clin Endocrinol Metab. 2019;104(8):3327–36. https://doi.org/10.1210/jc.2018-02414.
Article PubMed PubMed Central Google Scholar
Kilkenny D, Rocheleau J. The FGF21 receptor signaling complex: Klothoβ, FGFR1c, and other regulatory interactions. Vitam Horm. 2016;101:17–58. https://doi.org/10.1016/bs.vh.2016.02.008.
Article PubMed CAS Google Scholar
Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78:223–41. https://doi.org/10.1146/annurev-physiol-021115-105339.
Article PubMed CAS Google Scholar
Aaldijk AS, Verzijl CR, Jonker JW, Struik D. Biological and pharmacological functions of the FGF19-and FGF21-coreceptor beta klotho. Front Endocrinol. 2023;14:1150222.
Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, et al. Exercise/physical activity in individuals with type 2 diabetes: a consensus statement from the American College of Sports Medicine. Med Sci Sports Exerc. 2022;54(2):353–68. https://doi.org/10.1016/j.ajmo.2023.100031.
Article PubMed PubMed Central Google Scholar
de Oliveira TG, da Silva CS, Rezende VR, Rebelo ACS. Acute effects of high-intensity interval training on diabetes mellitus: a systematic review. Int J Environ Res Public Health. 2022;19(12):7049. https://doi.org/10.3390/ijerph19127049.
Su L, Fu J, Sun S, Zhao G, Cheng W, Dou C, et al. Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: a meta-analysis. PLoS ONE. 2019;14(1): e0210644. https://doi.org/10.1016/j.heliyon.2023.e20402.
Article PubMed PubMed Central CAS Google Scholar
Grace A, Chan E, Giallauria F, Graham PL, Smart NA. Clinical outcomes and glycaemic responses to different aerobic exercise training intensities in type II diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol. 2017;16:1–10. https://doi.org/10.1186/s12933-017-0518-6.
Shabab S, Mahmoudabady M, Gholamnezhad Z, Niazmand S, Fouladi M, Emadi ZM. Endurance exercise prevented diabetic cardiomyopathy through the inhibition of fibrosis and hypertrophy in rats. Rev Cardiovasc Med. 2024;25(5):173.
Article PubMed PubMed Central Google Scholar
Yang W, Liu L, Wei Y, Fang C, Zhou F, Chen J, et al. Exercise ameliorates the FGF21–adiponectin axis impairment in diet-induced obese mice. Endocr Connect. 2019;8(5):596. https://doi.org/10.1530/EC-19-0034.
Article PubMed PubMed Central CAS Google Scholar
Geng L, Liao B, Jin L, Huang Z, Triggle CR, Ding H, et al. Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep. 2019;26(10):2738–52. https://doi.org/10.1016/j.celrep.2019.02.014.
Article PubMed CAS Google Scholar
Henkel J, Buchheim-Dieckow K, Castro JP, Laeger T, Wardelmann K, Kleinridders A, et al. Reduced oxidative stress and enhanced FGF21 formation in livers of endurance-exercised rats with diet-induced NASH. Nutrients. 2019;11(11):2709. https://doi.org/10.3390/nu11112709.
Article PubMed PubMed Central CAS Google Scholar
Keihanian A, Arazi H, Kargarfard M. Effects of aerobic versus resistance training on serum fetuin-A, fetuin-B, and fibroblast growth factor-21 levels in male diabetic patients. Physiol Int. 2019;106(1):70–80.
Article PubMed CAS Google Scholar
Pérez-López A, Gonzalo-Encabo P, Pérez-Köhler B, García-Honduvilla N, Valadés D. Circulating myokines IL-6, IL-15 and FGF21 response to training is altered by exercise type but not by menopause in women with obesity. Eur J Sport Sci. 2022;22(9):1426–35. https://doi.org/10.1080/17461391.2021.1939430.
Motahari Rad M, Bijeh N, Attarzadeh Hosseini SR, Raouf SA. The effect of two concurrent exercise modalities on serum concentrations of FGF21, irisin, follistatin, and myostatin in men with type 2 diabetes mellitus. Arch Physiol Biochem. 2023;129(2):424–33. https://doi.org/10.1080/13813455.2020.1829649.
Article PubMed CAS Google Scholar
Riahy S. The effects of 12 weeks of high-intensity interval training and moderate-intensity continuous training on FGF21, irisin, and myostatin in men with type 2 diabetes mellitus. Growth Factors. 2024;42(1):24–35.
Article PubMed CAS Google Scholar
Kim YJ, Kim HJ, Lee SG, Jang SI, Go HS, Lee WJ, et al. Aerobic exercise for eight weeks provides protective effects towards liver and cardiometabolic health and adipose tissue remodeling under metabolic stress for one week: a study in mice. Metab. 2022;130: 155178. https://doi.org/10.1016/j.metabol.2022.155178.
Xiong Y, Chen Y, Liu Y, Zhang B. Moderate-intensity continuous training improves FGF21 and KLB expression in obese mice. Biochem. 2020;85:938–46. https://doi.org/10.1134/S000629792008009X.
Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep. 2017;7(1):204.
Comments (0)