Effects of exercise intensity and diet on cardiac tissue structure and FGF21/β-Klotho signaling in type 2 diabetic mice: a comparative study of HFD and HFD + STZ induced type 2 diabetes models in mice

IDF. IDF Diabetes Atlas, 10th Edition. International Diabetes Federation 2022;

Ma C-X, Ma X-N, Guan C-H, Li Y-D, Mauricio D, Fu S-B. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol. 2022;21(1):74. https://doi.org/10.1186/s12933-022-01516-6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. 2020;17(9):585–607. https://doi.org/10.1038/s41569-020-0339-2.

Article  PubMed  PubMed Central  Google Scholar 

Hölscher ME, Bode C, Bugger H. Diabetic cardiomyopathy: does the type of diabetes matter? Int J Mol Sci. 2016;17(12):2136. https://doi.org/10.3390/ijms17122136.

Article  PubMed  PubMed Central  Google Scholar 

Reed M, Meszaros K, Entes L, Claypool M, Pinkett J, Gadbois T, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390–4. https://doi.org/10.1053/meta.2000.17721.

Article  PubMed  CAS  Google Scholar 

Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: incorporating a high-fat diet and streptozotocin. Biomed Pharmacother. 2017;95:605–13. https://doi.org/10.1016/j.biopha.2017.08.098.

Article  PubMed  CAS  Google Scholar 

Zhang Y, Liu D, Long X-X, Fang Q-C, Jia W-P, Li H-T. The role of FGF21 in the pathogenesis of cardiovascular disease. Chin Med J. 2021;134(24):2931–43. https://doi.org/10.1097/CM9.0000000000001890.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Szczepańska E, Gietka-Czernel M. Fgf21: a novel regulator of glucose and lipid metabolism and whole-body energy balance. Horm Metab Res. 2022;54(04):203–11. https://doi.org/10.1055/a-1778-4159.

Article  PubMed  CAS  Google Scholar 

Geng L, Lam KS, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654–67.

Article  PubMed  CAS  Google Scholar 

Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: an emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Diseases. 2024;11(3): 101064.

Article  PubMed  CAS  Google Scholar 

Barb D, Bril F, Kalavalapalli S, Cusi K. Plasma fibroblast growth factor 21 is associated with severity of nonalcoholic steatohepatitis in patients with obesity and type 2 diabetes. J Clin Endocrinol Metab. 2019;104(8):3327–36. https://doi.org/10.1210/jc.2018-02414.

Article  PubMed  PubMed Central  Google Scholar 

Kilkenny D, Rocheleau J. The FGF21 receptor signaling complex: Klothoβ, FGFR1c, and other regulatory interactions. Vitam Horm. 2016;101:17–58. https://doi.org/10.1016/bs.vh.2016.02.008.

Article  PubMed  CAS  Google Scholar 

Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78:223–41. https://doi.org/10.1146/annurev-physiol-021115-105339.

Article  PubMed  CAS  Google Scholar 

Aaldijk AS, Verzijl CR, Jonker JW, Struik D. Biological and pharmacological functions of the FGF19-and FGF21-coreceptor beta klotho. Front Endocrinol. 2023;14:1150222.

Article  Google Scholar 

Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, et al. Exercise/physical activity in individuals with type 2 diabetes: a consensus statement from the American College of Sports Medicine. Med Sci Sports Exerc. 2022;54(2):353–68. https://doi.org/10.1016/j.ajmo.2023.100031.

Article  PubMed  PubMed Central  Google Scholar 

de Oliveira TG, da Silva CS, Rezende VR, Rebelo ACS. Acute effects of high-intensity interval training on diabetes mellitus: a systematic review. Int J Environ Res Public Health. 2022;19(12):7049. https://doi.org/10.3390/ijerph19127049.

Article  CAS  Google Scholar 

Su L, Fu J, Sun S, Zhao G, Cheng W, Dou C, et al. Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: a meta-analysis. PLoS ONE. 2019;14(1): e0210644. https://doi.org/10.1016/j.heliyon.2023.e20402.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Grace A, Chan E, Giallauria F, Graham PL, Smart NA. Clinical outcomes and glycaemic responses to different aerobic exercise training intensities in type II diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol. 2017;16:1–10. https://doi.org/10.1186/s12933-017-0518-6.

Article  Google Scholar 

Shabab S, Mahmoudabady M, Gholamnezhad Z, Niazmand S, Fouladi M, Emadi ZM. Endurance exercise prevented diabetic cardiomyopathy through the inhibition of fibrosis and hypertrophy in rats. Rev Cardiovasc Med. 2024;25(5):173.

Article  PubMed  PubMed Central  Google Scholar 

Yang W, Liu L, Wei Y, Fang C, Zhou F, Chen J, et al. Exercise ameliorates the FGF21–adiponectin axis impairment in diet-induced obese mice. Endocr Connect. 2019;8(5):596. https://doi.org/10.1530/EC-19-0034.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Geng L, Liao B, Jin L, Huang Z, Triggle CR, Ding H, et al. Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep. 2019;26(10):2738–52. https://doi.org/10.1016/j.celrep.2019.02.014.

Article  PubMed  CAS  Google Scholar 

Henkel J, Buchheim-Dieckow K, Castro JP, Laeger T, Wardelmann K, Kleinridders A, et al. Reduced oxidative stress and enhanced FGF21 formation in livers of endurance-exercised rats with diet-induced NASH. Nutrients. 2019;11(11):2709. https://doi.org/10.3390/nu11112709.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Keihanian A, Arazi H, Kargarfard M. Effects of aerobic versus resistance training on serum fetuin-A, fetuin-B, and fibroblast growth factor-21 levels in male diabetic patients. Physiol Int. 2019;106(1):70–80.

Article  PubMed  CAS  Google Scholar 

Pérez-López A, Gonzalo-Encabo P, Pérez-Köhler B, García-Honduvilla N, Valadés D. Circulating myokines IL-6, IL-15 and FGF21 response to training is altered by exercise type but not by menopause in women with obesity. Eur J Sport Sci. 2022;22(9):1426–35. https://doi.org/10.1080/17461391.2021.1939430.

Article  PubMed  Google Scholar 

Motahari Rad M, Bijeh N, Attarzadeh Hosseini SR, Raouf SA. The effect of two concurrent exercise modalities on serum concentrations of FGF21, irisin, follistatin, and myostatin in men with type 2 diabetes mellitus. Arch Physiol Biochem. 2023;129(2):424–33. https://doi.org/10.1080/13813455.2020.1829649.

Article  PubMed  CAS  Google Scholar 

Riahy S. The effects of 12 weeks of high-intensity interval training and moderate-intensity continuous training on FGF21, irisin, and myostatin in men with type 2 diabetes mellitus. Growth Factors. 2024;42(1):24–35.

Article  PubMed  CAS  Google Scholar 

Kim YJ, Kim HJ, Lee SG, Jang SI, Go HS, Lee WJ, et al. Aerobic exercise for eight weeks provides protective effects towards liver and cardiometabolic health and adipose tissue remodeling under metabolic stress for one week: a study in mice. Metab. 2022;130: 155178. https://doi.org/10.1016/j.metabol.2022.155178.

Article  CAS  Google Scholar 

Xiong Y, Chen Y, Liu Y, Zhang B. Moderate-intensity continuous training improves FGF21 and KLB expression in obese mice. Biochem. 2020;85:938–46. https://doi.org/10.1134/S000629792008009X.

Article  CAS  Google Scholar 

Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep. 2017;7(1):204.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif