Vector-based navigation in desert ants: the significance of path-integration vectors

Baddeley B, Graham P, Husbands P, Philippides A (2012) A model of ant route navigation driven by scene familiarity. PLoS Comp Biol 8:e1002336. https://doi.org/10.1371/journal.pcbi.1002336

Article  CAS  Google Scholar 

Bennett AT (1996) Do animals have cognitive maps? J Exp Biol 199:219–224. https://doi.org/10.1242/jeb.199.1.219

Article  CAS  PubMed  Google Scholar 

Bolek S, Wolf H (2015) Food searches and guiding structures in north African desert ants, Cataglyphis fortis. J Comp Physiol A 201:631–644. https://doi.org/10.1007/s00359-015-0985-8

Bühlmann C, Graham P, Hansson BS, Knaden M (2014) Desert ants locate food by combining high sensitivity to food odors with extensive crosswind runs. Curr Biol 24:960–964. https://doi.org/10.1016/j.cub.2014.02.056

Article  CAS  Google Scholar 

Cheeseman JF, Millar CD, Greggers U, Lehmann K, Pawley MDM, Gallistel CR, Warman GR, Menzel R (2014a) Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proc Natl Acad Sci USA 111:8949–8954. https://doi.org/10.1073/pnas.1408039111

Article  CAS  Google Scholar 

Cheeseman JF, Milar CD, Greggers U, Lehmann K, Pawley MDM, Gallistel CR, Warman GR, Menzel R (2014b) Reply to Cheung: The cognitive map hypothesis remains the best interpretation of the data in honeybee navigation. Proc Natl Acad Sci USA 111: E4398. https://doi.org/10.1073/pnas.1415738111

Cheung A, Collett M, Collett TS, Dewar A, Dyer F, Graham P, Mangan M, Narendra A, Philippides A, Stürzl W, Webb B, Wystrach A, Zeil J (2014) Still no convincing evidence for cognitive map use by honeybees. Proc Natl Acad Sci USA 111:E4398–E4397. https://doi.org/10.1073/pnas.1413581111

Article  CAS  Google Scholar 

Collett M, Collett TS (2000) How do insects use path integration for their navigation? Biol Cybern 83:245–259. https://doi.org/10.1007/s004220000168

Article  CAS  PubMed  Google Scholar 

Collett TS, Graham P (2004) Animal navigation: path integration, visual landmarks and cognitive maps. Curr Biol 14:R475-R477. https://doi.org/10.1016/j.cub.2004.06.013

Collett M, Collett TS, Wehner R (1999) Calibration of vector navigation in desert ants. Curr Biol 9:1031–1034. https://doi.org/10.1016/S0960-9822(99)80451-5

Article  CAS  PubMed  Google Scholar 

Collett M, Collett TS, Chameron S, Wehner R (2003) Do familiar landmarks reset the global path integration system of desert ants? J Exp Biol 206:877–882. https://doi.org/10.1242/jeb.00176

Article  CAS  PubMed  Google Scholar 

Cruse H, Wehner R (2011) No need for a cognitive map: decentralized memory for insect navigation. PLoS Comput Biol 7:e1002009. https://doi.org/10.1371/journal.pcbi.1002009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhein K (2023) The cognitive map debate in insects: a historical perspective on what is at stake. Stud Hist Philos Sci 98:62–79. https://doi.org/10.1016/j.shpsa.2022.12.008

Article  PubMed  Google Scholar 

Dyer FC (1991) Bees acquire route-based memories but not cognitive maps in a familiar landscape. Anim Behav 41:239–246. https://doi.org/10.1016/S0003-3472(05)80475-0

Article  Google Scholar 

Dyer FC, Gill M, Sharbowski J (2002) Motivation and vector navigation in honey bees. Naturwissenschaften 89:262–264. https://doi.org/10.1007/s00114-002-0311-5

Article  CAS  PubMed  Google Scholar 

Fent K (1985) Himmelsorientierung bei der Wüstenameise Cataglyphis bicolor: Bedeutung von Komplexaugen und Ocellen. PhD Thesis, University of Zürich

Fleischmann PN, Grob R, Wehner R, Rössler W (2017) Species-specific differences in the fine structure of learning walk elements in Cataglyphis ants. J Exp Biol 220:2426–2435. https://doi.org/10.1242/jeb.158147

Article  PubMed  Google Scholar 

Fleischmann PN, Grob R, Müller VL, Wehner R, Rössler W (2018a) The geomagnetic field is a compass cue in Cataglyphis ant navigation. Curr Biol 28:1440–1444. https://doi.org/10.1016/j.cub.2018.03.043

Article  CAS  PubMed  Google Scholar 

Fleischmann PN, Rössler W, Wehner R (2018b) Early foraging life: spatial and temporal aspects of landmark learning in the ant Cataglyphis noda. J Comp Physiol A 204:579–592. https://doi.org/10.1007/s00359-018-1260-6

Gallistel CR (1990) The organization of learning. The MIT Press, Cambridge, MA

Google Scholar 

Golledge RG (ed) (1999) Wayfinding behavior. Cognitive mapping and other spatial processes. Johns Hopkins University, Baltimore and London

Google Scholar 

Graham P, Philippides A, Baddeley B (2010) Animal cognition: multi-modal interactions in ant learning. Curr Biol 20:R639–R640. https://doi.org/10.1016/j.cub.2010.06.018

Article  CAS  PubMed  Google Scholar 

Hartmann G, Wehner R (1995) The ant’s path integration system: a neural architecture. Biol Cybern 73:483–497. https://doi.org/10.1007/s004220050204

Article  Google Scholar 

Healy S (1998) Spatial representation in animals. Oxford University Press, Oxford

Book  Google Scholar 

Heinze S, Narendra A, Cheung A (2018) Principles of insect path integration. Curr Biol 28:R1043–R1058. https://www.cell.com/current-biology/fulltext/S0960-9822

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoinville T, Wehner R (2018) Optimal multiguidance integration in insect navigation. Proc Natl Acad Sci USA 115:2824–2829. https://doi.org/10.1073/pnas.1721668115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber R, Knaden M (2015) Egocentric and geocentric navigation during extremely long foraging paths of desert ants. J Comp Physiol A 201:609–616. https://doi.org/10.1007/s00359-015-0998-3

Article  Google Scholar 

Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura S-Y, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V (2021) A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. Elife 10:e66039. https://doi.org/10.7554/eLife.66039

Article  PubMed  PubMed Central  Google Scholar 

Jeffery KJ (ed) (2003) The neurobiology of spatial behaviour. Oxford University Press, Oxford

Google Scholar 

Kim SS, Rounault H, Druckmann S, Jayaraman V (2017) Ring attractor dynamics in the Drosophila central brain. Sci 35:849–843. https://doi.org/10.1126/science.aal4835

Article  Google Scholar 

Knaden M, Wehner R (2006) Ant navigation: resetting the path integrator. J Exp Biol 209:26–31. https://doi.org/10.1242/jeb.01976

Article  PubMed  Google Scholar 

Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol Learn Mem 83:1–12. https://doi.org/10.1016/j.nlm.2004.05.011

Article  PubMed  Google Scholar 

Le Moël F, Stone T, Lihoreau M, Wystrach A, Webb B (2019) The central complex as a potential substrate for vector based navigation. Front Psychol 10:690. https://doi.org/10.3389/fpsyg.2019.00690

Article  PubMed  PubMed Central  Google Scholar 

Lent DD, Graham P, Collett TS (2010) Image-matching during ant navigation occurs through saccade-like body turns controlled by learned visual features. Proc Natl Acad Sci USA 107:16348–16353. https://doi.org/10.1073/pnas.1006021107

Article  PubMed  PubMed Central  Google Scholar 

Lu J, Maimon G, Dickinson MH, Druckmann S, Wilson RI (2022) Transforming representations of movement from body- to world-centric space. Nature 601:98–104. https://doi.org/10.1038/s41586-021-04191-x

Article  CAS  PubMed  Google Scholar 

Lyu C, Abbott LF, Maimon G (2022) Building an allocentric travelling direction signal via vector computation. Nature 601:92–97. https://doi.org/10.1038/s41586-021-04067-0

Article  CAS  PubMed  Google Scholar 

Mallot HA (2023) From geometry to behavior. An introduction to spatial cognition. The MIT Press, Cambridge, MA

Google Scholar 

Mangan M, Webb B (2012) Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav Ecol 23:944–954. https://doi.org/10.1093/beheco/ars051

Article 

Comments (0)

No login
gif