Effect of pH on antitumor activity of Chinese cobra (Naja atra) cytotoxin-XII

Chaim-Matyas A, Borkow G, Ovadia M (1991) Isolation and characterization of a cytotoxin P4 from the venom of Naja nigricollis nigricollis preferentially active on tumor cells. Biochem Int 24:415–421

CAS  PubMed  Google Scholar 

Chen YH, Hu CT, Yang JT (1984) Membrane disintegration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide). Biochem Int 8:329–338

CAS  PubMed  Google Scholar 

Dubovskii PV, Lesovoy DM, Dubinnyi MA, Utkin YN, Arseniev AS (2003) Interaction of the P-type cardiotoxin with phospholipid membranes. Eur J Biochem 270:2038–2046. https://doi.org/10.1046/j.1432-1033.2003.03580.x

Article  CAS  PubMed  Google Scholar 

Dubovskii PV, Dubinnyi MA, Volynsky PE, Pustovalova YE, Konshina AG, Utkin YN, Arseniev AS, Efremov RG (2018) Impact of membrane partitioning on the spatial structure of an S-type cobra cytotoxin. J Biomol Struct Dyn 36:3463–3478. https://doi.org/10.1080/07391102.2017.1389662

Article  CAS  PubMed  Google Scholar 

Dubovskii PV, Dubova KM, Bourenkov G, Starkov VG, Konshina AG, Efremov RG, Utkin YN, Samygina VR (2022) Variability in the spatial structure of the central loop in cobra cytotoxins revealed by X-ray analysis and molecular modeling. Toxins 14:149. https://doi.org/10.3390/toxins14020149

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dufton MJ, Hider RC (1988) Structure and pharmacology of elapid cytotoxins. Pharmacol Ther 36:1–40. https://doi.org/10.1016/0163-7258(88)90111-8

Article  CAS  PubMed  Google Scholar 

Ebrahim K, Shirazi FH, Vatanpour H, Zare A, Kobarfard F, Rabiei H (2014) Anticancer activity of cobra venom polypeptide, cytotoxin-II, against human breast adenocarcinoma cell line (MCF-7) via the induction of apoptosis. J Breast Cancer 17:314–322. https://doi.org/10.4048/jbc.2014.17.4.314

Article  PubMed  PubMed Central  Google Scholar 

Efremov RG, Volynsky PE, Nolde DE, Dubovskii PV, Arseniev AS (2002) Interaction of cardiotoxins with membranes: a molecular modeling study. Biophys J 83:144–153. https://doi.org/10.1016/S0006-3495(02)75156-4

Article  PubMed  PubMed Central  Google Scholar 

Feofanov AV, Sharonov GV, Astapova MV, Rodionov DI, Utkin YN, Arseniev AS (2005) Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochem J 390:11–18. https://doi.org/10.1042/BJ20041892

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasanov SE, Rael ED (1992) Effect of membrane-active polypeptides and venom phospholipases A2 on human and mouse lymphocytes. In: Proceedings of the New Mexico Branch of American Society for Microbiology, Albuquerque, New Mexico, USA

Gasanov SE, Rael ED, Martinez M, Baeza G, Vernon LP (1994) Modulation of phospholipase A2 activity by membrane-active peptides on liposomes of different phospholipid composition. Gen Physiol Biophys 13:275–286

CAS  PubMed  Google Scholar 

Gasanov SE, Alsarraj MA, Gasanov NE, Rael ED (1997) Cobra venom cytotoxin free of phospholipase A2 and its effect on model membranes and T leukemia cells. J Membr Biol 155:133–142. https://doi.org/10.1007/s002329900165

Article  CAS  PubMed  Google Scholar 

Kong L, Wang X, Liao M, Zhang X, Zhou Y, Zhang H, Luo X (2024) Isolation and purification of cobra venom cytotoxin-1 and its effect on PI3K/AKT signaling pathway in HSC-LX2 cells. Chin J Pharmacol 40:599–600

Google Scholar 

Lin SR, Chang LS, Chang KL (2002) Separation and structure-function studies of Taiwan cobra cardiotoxins. J Protein Chem 21:81–86. https://doi.org/10.1023/a:1014520126856

Article  CAS  PubMed  Google Scholar 

Lin Q, Jing Y, Yan C, Chen X, Zhang Q, Lin X, Xu Y, Chen B (2024) Design and application of pH-responsive liposomes for site-specific delivery of cytotoxin from Cobra Venom. Int J Nanomed 19:5381–5395. https://doi.org/10.2147/IJN.S461728

Article  Google Scholar 

Liu Y, Ming W, Wang Y, Liu S, Qiu Y, Xiang Y, Hu L, Fan L, Peng X, Wang H, Kong T, Dong W, Guo Q (2019) Cytotoxin 1 from Naja atra Cantor venom induced necroptosis of leukemia cells. Toxicon 165:110–115. https://doi.org/10.1016/j.toxicon.2019.04.012

Article  CAS  PubMed  Google Scholar 

Pautu V, Mellinger A, Resnier P, Lepeltier E, Martin L, Boussemart L, Letournel F, Passirani C, Clere N (2019) Melanoma tumour vasculature heterogeneity: from mice models to human. J Cancer Res Clin Oncol 145:589–597. https://doi.org/10.1007/s00432-018-2809-z

Article  PubMed  Google Scholar 

Stevens-Truss R, Hinman CL (1997) Activities of cobra venom cytotoxins toward heart and leukemic T-cells depend on localized amino acid differences. Toxicon 35:659–669. https://doi.org/10.1016/s0041-0101(96)00188-2

Article  CAS  PubMed  Google Scholar 

Stevens-Truss R, Messer WS Jr, Hinman CL (1996) Heart and T-lymphocyte cell surfaces both exhibit positive cooperativity in binding a membrane-lytic toxin. J Membr Biol 150:113–122. https://doi.org/10.1007/s002329900035

Article  CAS  PubMed  Google Scholar 

Tsai PC, Chu CL, Chiu CC, Chang LS, Lin SR (2014) Cardiotoxin III suppresses hepatocyte growth factor-stimulated migration and invasion of MDA-MB-231 cells. Cell Biochem Funct 32:485–495. https://doi.org/10.1002/cbf.3041

Article  CAS  PubMed  Google Scholar 

Wu M, Ming W, Tang Y, Zhou S, Kong T, Dong W (2013) The anticancer effect of cytotoxin 1 from Naja atra Cantor venom is mediated by a lysosomal cell death pathway involving lysosomal membrane permeabilization and cathepsin B release. Am J Chin Med 41:643–663. https://doi.org/10.1142/S0192415X13500456

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif