Ali H, Al-Yatama MK, Abu-Farha M, Behbehani K, Al MA (2015) Multi-lineage differentiation of human umbilical cord Wharton’s jelly mesenchymal stromal cells mediates changes in the expression profile of stemness markers. PLoS ONE 10:e0122465
Article PubMed PubMed Central Google Scholar
Anderson P, Carrillo-Gálvez AB, García-Pérez A, Cobo M, Martín F (2013) CD105 (endoglin)-negative murine mesenchymal stromal cells define a new multipotent subpopulation with distinct differentiation and immunomodulatory capacities. PLoS ONE 8:e76979
Article CAS PubMed PubMed Central Google Scholar
Andrzejewska A, Lukomska B, Janowski M (2019) Concise review: mesenchymal stem cells: from roots to boost. Stem Cells 37:855–864
Baghaei K, Hashemi SM, Tokhanbigli S, Asadi Rad A, Assadzadeh-Aghdaei H, Sharifian A et al (2017) Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench 10:208–213
PubMed PubMed Central Google Scholar
Chen MS, Wang TJ, Lin HC, Burnouf T (2019) Four types of human platelet lysate, including one virally inactivated by solvent-detergent, can be used to propagate Wharton jelly mesenchymal stromal cells. New Biotechnol 49:151–160
Deng Y, Zhang Y, Ye L, Zhang T, Cheng J, Chen G et al (2016) Umbilical cord-derived mesenchymal stem cells instruct monocytes towards an IL10-producing phenotype by secreting IL6 and HGF. Sci Rep 6:37566
Article CAS PubMed PubMed Central Google Scholar
Fathi MN, Hassan ZYY, Tang YL, Ng MH, Law JX (2021) Expired platelet concentrate as a source of human platelet lysate for xenogeneic-free culture of human dermal fibroblasts. Sains Malays 50:2355–2365
Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1966) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplant 6(2):230–247
Govindasamy V, Ronald VS, Abdullah AN, Ganesan Nathan KR, Aziz ZA, Abdullah M et al (2011) Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications. Cytotherapy 13:1221–1233
Article CAS PubMed Google Scholar
Haack-Sørensen M, Juhl M, Follin B, Harary Søndergaard R, Kirchhoff M, Kastrup J et al (2018) Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate scandinavian. J Clin Lab Investig 78:293–300
Hafez P, Chowdhury SR, Jose S, Law JX, Ruszymah BHI, Mohd Ramzisham AR et al (2018) Development of an in vitro cardiac ischemic model using primary human cardiomyocytes. Cardiovasc Eng Technol 9:529–538
Hassan MNFB, Yazid MD, Yunus MHM, Chowdhury SR, Lokanathan Y, Idrus RBH et al (2020) Large-scale expansion of human mesenchymal stem cells. Stem Cells Int 2020:9529465
Article PubMed PubMed Central Google Scholar
Kabat M, Bobkov I, Kumar S, Grumet M (2020) Trends in mesenchymal stem cell clinical trials 2004–2018: is efficacy optimal in a narrow dose range? Stem Cells Transl Med 9:17–27
Article CAS PubMed Google Scholar
Kang JY, Oh MK, Joo H, Park HS, Chae DH, Kim J, Lee HR, Oh IH, Yu KR (2020) Xeno-free condition enhances therapeutic functions of human wharton’s jelly-derived mesenchymal stem cells against experimental colitis by upregulated indoleamine 2, 3-dioxygenase activity. J Clin Med 9:2913
Article CAS PubMed PubMed Central Google Scholar
Kong CM, Lin HD, Biswas A, Bongso A, Fong CY (2019) Manufacturing of human Wharton’s jelly stem cells for clinical use: selection of serum is important. Cytotherapy 21:483–495
Article CAS PubMed Google Scholar
Liau LL, Makpol S, Azurah AGN, Chua KH (2018) Human adipose-derived mesenchymal stem cells promote recovery of injured HepG2 cell line and show sign of early hepatogenic differentiation. Cytotechnology 70:1221–1233
Article CAS PubMed PubMed Central Google Scholar
Liau LL, Al-Masawa ME, Koh B, Looi QH, Foo JB, Lee SH et al (2020) The potential of mesenchymal stromal cell as therapy in neonatal diseases. Front Pediatr 8:591693
Article PubMed PubMed Central Google Scholar
Liau LL, Ruszymah BHI, Ng MH, Law JX (2020) Characteristics and clinical applications of Wharton’s jelly-derived mesenchymal stromal cells. Curr Res Translat Med 68:5–16
Liau LL, Hassan M, Tang YL, Ng MH, Law JX (2021) Feasibility of human platelet lysate as an alternative to foetal bovine serum for in vitro expansion of chondrocytes. Int J Mole Sci. https://doi.org/10.3390/ijms22031269
Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH (2016) MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Cytotherapy 18:1493–1502
Article CAS PubMed Google Scholar
Lim J, Razi ZRM, Law JX, Nawi AM, Idrus RBH, Chin TG et al (2018) Mesenchymal stromal cells from the maternal segment of human umbilical cord is ideal for bone regeneration in allogenic setting. Tissue Eng Regenerat Med 15:75–87
Looi QH, Eng SP, Liau LL, Tor YS, Mohd Yazid B, Ng MH et al (2020) Mesenchymal stem cell therapy for sports injuries-from research to clinical practice. Sains Malaysiana 49:825–838
Marino L, Castaldi MA, Rosamilio R, Ragni E, Vitolo R, Fulgione C et al (2019) Mesenchymal stem cells from the Wharton’s jelly of the human umbilical cord: biological properties and therapeutic potential. Int J Stem Cells 12:218–226
Article CAS PubMed PubMed Central Google Scholar
Mark P, Kleinsorge M, Gaebel R, Lux CA, Toelk A, Pittermann E et al (2013) Human mesenchymal stem cells display reduced expression of CD105 after culture in serum-free medium. Stem Cells Int 2013:698076
Article PubMed PubMed Central Google Scholar
Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G et al (2019) Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl Med 8:1135–1148
Article PubMed PubMed Central Google Scholar
Matheni C, Dsouza W (2021) Xeno-free human Wharton’s jelly mesenchymal stromal cells maintain their characteristic properties after long-term cryopreservation. Cell J 23:145–153
Mizukami A, Fernandes-Platzgummer A, Carmelo JG, Swiech K, Covas DT, Cabral JM et al (2016) Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Biotechnol J 11:1048–1059
Article CAS PubMed Google Scholar
Nekanti U, Mohanty L, Venugopal P, Balasubramanian S, Totey S, Ta M (2010) Optimization and scale-up of Wharton’s jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res 5:244–254
Article CAS PubMed Google Scholar
Niknam B, Azizsoltani A, Heidari N, Tokhanbigli S, Alavifard H, Haji Valili M et al (2024) A simple high yield technique for isolation of Wharton’s jelly-derived mesenchymal stem cell. Avicenna J Med Biotechnol 16:95–103
PubMed PubMed Central Google Scholar
Omar N, Lokanathan Y, Mohd Razi ZR, Bt Haji Idrus R (2019) The effects of Centella asiatica (L.) urban on neural differentiation of human mesenchymal stem cells in vitro. BMC Complement Alternat Med 19:1–15
Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K et al (2020) A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Sci Rep 10:4290
Article PubMed PubMed Central Google Scholar
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerat Med 4:22
Prana Hardinata BBH, Muhammad Hanif BM, Aisya Hanim BO, Nurulain Hanani BN, Nur Saihah BMA, Muhammad Najib Fathi BH et al (2019) Human platelet lysate promotes proliferation but fails to maintain chondrogenic markers of chondrocytes. Sains Malaysian. 48:2169–2176
Riis S, Nielsen FM, Pennisi CP, Zachar V, Fink T (2016) Comparative analysis of media and supplements on initiation and expansion of adipose-derived stem cells. Stem Cells Translat Med 5:314–324
Comments (0)