BAG3’s dual roles in Parkinson’s disease and cardiomyopathy: benefit or liability?

Antoku K, Maser RS, Scully WJ, Delach SM, Johnson DE (2001) Isolation of Bcl-2 binding proteins that exhibit homology with BAG-1 and suppressor of death domains protein. Biochem Biophys Res Commun 286:1003–1010. https://doi.org/10.1006/bbrc.2001.5512

Article  CAS  PubMed  Google Scholar 

Arimura T, Ishikawa T, Nunoda S, Kawai S, Kimura A (2011) Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum Mutat 32:1481–1491. https://doi.org/10.1002/humu.21603

Article  CAS  PubMed  Google Scholar 

Avinery L, Gahramanov V, Hesin A, Sherman MY (2022) Hsp70–Bag3 module regulates macrophage motility and tumor infiltration via transcription factor LITAF and CSF1. Cancers 14:4168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekker M, Abrahams S, Loos B, Bardien S (2021) Can the interplay between autophagy and apoptosis be targeted as a novel therapy for Parkinson’s disease? Neurobiol Aging 100:91–105. https://doi.org/10.1016/j.neurobiolaging.2020.12.013

Article  CAS  PubMed  Google Scholar 

Blits B, Petry H (2016) Perspective on the road toward gene therapy for Parkinson’s disease. Front Neuroanat 10:128. https://doi.org/10.3389/fnana.2016.00128

Article  CAS  PubMed  Google Scholar 

Cao YL, Yang YP, Mao CJ, Zhang XQ, Wang CT, Yang J et al (2017) A role of BAG3 in regulating SNCA/α-synuclein clearance via selective macroautophagy. Neurobiol Aging 60:104–115. https://doi.org/10.1016/j.neurobiolaging.2017.08.023

Article  CAS  PubMed  Google Scholar 

Doong H, Vrailas A, Kohn EC (2002) What’s in the ‘BAG’?—a functional domain analysis of the BAG-family proteins. Cancer Lett 188:25–32

Article  CAS  PubMed  Google Scholar 

Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM (2017) Hsp70–a master regulator in protein degradation. FEBS Lett 591:2648–2660

Article  PubMed  Google Scholar 

Fu H, Possenti A, Freer R, Nakano Y, Hernandez Villegas NC, Tang M et al (2019) A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology. Nat Neurosci 22:47–56. https://doi.org/10.1038/s41593-018-0298-7

Article  CAS  PubMed  Google Scholar 

Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28:889–901

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

Article  CAS  PubMed  Google Scholar 

Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125:861–870. https://doi.org/10.1093/brain/awf080

Article  PubMed  Google Scholar 

Hwu PW-L, Kiening K, Anselm I, Compton DR, Nakajima T, Opladen T et al (2021) Gene therapy in the putamen for curing AADC deficiency and Parkinson’s disease. EMBO Mol Med 13:e14712. https://doi.org/10.15252/emmm.202114712

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamath T, Abdulraouf A, Burris SJ, Langlieb J, Gazestani V, Nadaf NM et al (2022) Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat Neurosci 25:588–595. https://doi.org/10.1038/s41593-022-01061-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kögel D, Linder B, Brunschweiger A, Chines S, Behl C (2020) At the crossroads of apoptosis and autophagy: multiple roles of the co-chaperone BAG3 in stress and therapy resistance of cancer. Cells 9:574. https://doi.org/10.3390/cells9030574

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulkarni AS, Burns MR, Brundin P, Wesson DW (2022) Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson’s disease. Brain Commun. https://doi.org/10.1093/braincomms/fcac165

Article  PubMed  PubMed Central  Google Scholar 

Kumar A, Dhawan A, Kadam A, Shinde A (2018) Autophagy and mitochondria: targets in neurodegenerative disorders. CNS Neurol Disord-Drug Targets 17:696–705

Article  CAS  PubMed  Google Scholar 

Lev N, Melamed E, Offen D (2003) Apoptosis and Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27:245–250

Article  CAS  PubMed  Google Scholar 

Lin H, Sandkuhler S, Dunlea C, Rodwell-Bullock J, King DH, Johnson GVW (2024) BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1. Autophagy 20:577–589. https://doi.org/10.1080/15548627.2023.2276622

Article  CAS  PubMed  Google Scholar 

Lin H, Tang M, Ji C, Girardi P, Cvetojevic G, Chen D et al (2022) BAG3 regulation of RAB35 mediates the endosomal sorting complexes required for transport/endolysosome pathway and tau clearance. Biol Psychiat 92:10–24. https://doi.org/10.1016/j.biopsych.2021.10.024

Article  CAS  PubMed  Google Scholar 

Liu J, Liu W, Yang H (2019) Balancing apoptosis and autophagy for Parkinson’s disease therapy: targeting BCL-2. ACS Chem Neurosci 10:792–802. https://doi.org/10.1021/acschemneuro.8b00356

Article  CAS  PubMed  Google Scholar 

Lu J, Wu M, Yue Z (2020) Autophagy and Parkinson’s disease. In: Le W (ed) Autophagy: biology and diseases. Advances in experimental medicine and biology. Springer, Singapore, pp 21–51. https://doi.org/10.1007/978-981-15-4272-5_2

Chapter  Google Scholar 

Luthold C, Lambert H, Guilbert SM, Rodrigue M-A, Fuchs M, Varlet A-A et al (2021) CDK1-mediated phosphorylation of BAG3 promotes mitotic cell shape remodeling and the molecular assembly of mitotic p62 bodies. Cells 10:2638. https://doi.org/10.3390/cells10102638

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martirosyan A, Ansari R, Pestana F, Hebestreit K, Gasparyan H, Aleksanyan R et al (2024) Unravelling cell type-specific responses to Parkinson’s disease at single cell resolution. Mol Neurodegener 19:7. https://doi.org/10.1186/s13024-023-00699-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morrison C, Li L, Liang J, Chen S, Acosta DM, Fitzgerald JA et al (2022) BAG3 attenuates tau hyperphosphorylation and gliosis induced by traumatic brain injury. Alzheimers Dement 18:e066654

Article  Google Scholar 

Myers VD, McClung JM, Wang J, Tahrir FG, Gupta MK, Gordon J et al (2018) The multifunctional protein BAG3: a novel therapeutic target in cardiovascular disease. JACC Basic Transl Sci 3:122–131

Article  PubMed  PubMed Central  Google Scholar 

Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D et al (2019) Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18:1091–1102. https://doi.org/10.1016/s1474-4422(19)30320-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qu H-Q, Wang J-F, Rosa-Campos A, Hakonarson H, Feldman AM (2024) The role of BAG3 protein interactions in cardiomyopathies. Int J Mol Sci 25:11308

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif