Antoku K, Maser RS, Scully WJ, Delach SM, Johnson DE (2001) Isolation of Bcl-2 binding proteins that exhibit homology with BAG-1 and suppressor of death domains protein. Biochem Biophys Res Commun 286:1003–1010. https://doi.org/10.1006/bbrc.2001.5512
Article CAS PubMed Google Scholar
Arimura T, Ishikawa T, Nunoda S, Kawai S, Kimura A (2011) Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum Mutat 32:1481–1491. https://doi.org/10.1002/humu.21603
Article CAS PubMed Google Scholar
Avinery L, Gahramanov V, Hesin A, Sherman MY (2022) Hsp70–Bag3 module regulates macrophage motility and tumor infiltration via transcription factor LITAF and CSF1. Cancers 14:4168
Article CAS PubMed PubMed Central Google Scholar
Bekker M, Abrahams S, Loos B, Bardien S (2021) Can the interplay between autophagy and apoptosis be targeted as a novel therapy for Parkinson’s disease? Neurobiol Aging 100:91–105. https://doi.org/10.1016/j.neurobiolaging.2020.12.013
Article CAS PubMed Google Scholar
Blits B, Petry H (2016) Perspective on the road toward gene therapy for Parkinson’s disease. Front Neuroanat 10:128. https://doi.org/10.3389/fnana.2016.00128
Article CAS PubMed Google Scholar
Cao YL, Yang YP, Mao CJ, Zhang XQ, Wang CT, Yang J et al (2017) A role of BAG3 in regulating SNCA/α-synuclein clearance via selective macroautophagy. Neurobiol Aging 60:104–115. https://doi.org/10.1016/j.neurobiolaging.2017.08.023
Article CAS PubMed Google Scholar
Doong H, Vrailas A, Kohn EC (2002) What’s in the ‘BAG’?—a functional domain analysis of the BAG-family proteins. Cancer Lett 188:25–32
Article CAS PubMed Google Scholar
Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM (2017) Hsp70–a master regulator in protein degradation. FEBS Lett 591:2648–2660
Fu H, Possenti A, Freer R, Nakano Y, Hernandez Villegas NC, Tang M et al (2019) A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology. Nat Neurosci 22:47–56. https://doi.org/10.1038/s41593-018-0298-7
Article CAS PubMed Google Scholar
Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28:889–901
Article CAS PubMed PubMed Central Google Scholar
Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336
Article CAS PubMed Google Scholar
Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125:861–870. https://doi.org/10.1093/brain/awf080
Hwu PW-L, Kiening K, Anselm I, Compton DR, Nakajima T, Opladen T et al (2021) Gene therapy in the putamen for curing AADC deficiency and Parkinson’s disease. EMBO Mol Med 13:e14712. https://doi.org/10.15252/emmm.202114712
Article CAS PubMed PubMed Central Google Scholar
Kamath T, Abdulraouf A, Burris SJ, Langlieb J, Gazestani V, Nadaf NM et al (2022) Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat Neurosci 25:588–595. https://doi.org/10.1038/s41593-022-01061-1
Article CAS PubMed PubMed Central Google Scholar
Kögel D, Linder B, Brunschweiger A, Chines S, Behl C (2020) At the crossroads of apoptosis and autophagy: multiple roles of the co-chaperone BAG3 in stress and therapy resistance of cancer. Cells 9:574. https://doi.org/10.3390/cells9030574
Article CAS PubMed PubMed Central Google Scholar
Kulkarni AS, Burns MR, Brundin P, Wesson DW (2022) Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson’s disease. Brain Commun. https://doi.org/10.1093/braincomms/fcac165
Article PubMed PubMed Central Google Scholar
Kumar A, Dhawan A, Kadam A, Shinde A (2018) Autophagy and mitochondria: targets in neurodegenerative disorders. CNS Neurol Disord-Drug Targets 17:696–705
Article CAS PubMed Google Scholar
Lev N, Melamed E, Offen D (2003) Apoptosis and Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27:245–250
Article CAS PubMed Google Scholar
Lin H, Sandkuhler S, Dunlea C, Rodwell-Bullock J, King DH, Johnson GVW (2024) BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1. Autophagy 20:577–589. https://doi.org/10.1080/15548627.2023.2276622
Article CAS PubMed Google Scholar
Lin H, Tang M, Ji C, Girardi P, Cvetojevic G, Chen D et al (2022) BAG3 regulation of RAB35 mediates the endosomal sorting complexes required for transport/endolysosome pathway and tau clearance. Biol Psychiat 92:10–24. https://doi.org/10.1016/j.biopsych.2021.10.024
Article CAS PubMed Google Scholar
Liu J, Liu W, Yang H (2019) Balancing apoptosis and autophagy for Parkinson’s disease therapy: targeting BCL-2. ACS Chem Neurosci 10:792–802. https://doi.org/10.1021/acschemneuro.8b00356
Article CAS PubMed Google Scholar
Lu J, Wu M, Yue Z (2020) Autophagy and Parkinson’s disease. In: Le W (ed) Autophagy: biology and diseases. Advances in experimental medicine and biology. Springer, Singapore, pp 21–51. https://doi.org/10.1007/978-981-15-4272-5_2
Luthold C, Lambert H, Guilbert SM, Rodrigue M-A, Fuchs M, Varlet A-A et al (2021) CDK1-mediated phosphorylation of BAG3 promotes mitotic cell shape remodeling and the molecular assembly of mitotic p62 bodies. Cells 10:2638. https://doi.org/10.3390/cells10102638
Article CAS PubMed PubMed Central Google Scholar
Martirosyan A, Ansari R, Pestana F, Hebestreit K, Gasparyan H, Aleksanyan R et al (2024) Unravelling cell type-specific responses to Parkinson’s disease at single cell resolution. Mol Neurodegener 19:7. https://doi.org/10.1186/s13024-023-00699-0
Article CAS PubMed PubMed Central Google Scholar
Morrison C, Li L, Liang J, Chen S, Acosta DM, Fitzgerald JA et al (2022) BAG3 attenuates tau hyperphosphorylation and gliosis induced by traumatic brain injury. Alzheimers Dement 18:e066654
Myers VD, McClung JM, Wang J, Tahrir FG, Gupta MK, Gordon J et al (2018) The multifunctional protein BAG3: a novel therapeutic target in cardiovascular disease. JACC Basic Transl Sci 3:122–131
Article PubMed PubMed Central Google Scholar
Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D et al (2019) Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18:1091–1102. https://doi.org/10.1016/s1474-4422(19)30320-5
Article CAS PubMed PubMed Central Google Scholar
Qu H-Q, Wang J-F, Rosa-Campos A, Hakonarson H, Feldman AM (2024) The role of BAG3 protein interactions in cardiomyopathies. Int J Mol Sci 25:11308
Comments (0)