Immune Response in Traumatic Brain Injury

Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic Brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill Summ. 2017;66(9):1–16. https://doi.org/10.15585/mmwr.ss6609a1.

Article  PubMed Central  PubMed  Google Scholar 

Steyerberg EW, Wiegers E, Sewalt C, Buki A, Citerio G, De Keyser V, Ercole A, Kunzmann K, Lanyon L, Lecky F, Lingsma H, Manley G, Nelson D, Peul W, Stocchetti N, von Steinbüchel N, Vande Vyvere T, Verheyden J, Wilson L, Maas AIR, Menon DK, CENTER-TBI Participants and Investigators. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurol. 2019;18(10):923–34. https://doi.org/10.1016/S1474-4422(19)30232-7.

Article  PubMed  Google Scholar 

Meyfroidt G, Bouzat P, Casaer MP, Chesnut R, Hamada SR, Helbok R, Hutchinson P, Maas AIR, Manley G, Menon DK, Newcombe VFJ, Oddo M, Robba C, Shutter L, Smith M, Steyerberg EW, Stocchetti N, Taccone FS, Wilson L, Zanier ER, Citerio G. Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med. 2022;48(6):649–66. https://doi.org/10.1007/s00134-022-06702-4. (Erratum in: Intensive Care Med. 2022 Jul;48(7):989-991. 10.1007/s00134-022-06759-1).

Article  PubMed  Google Scholar 

Shanahan R, Avsar P, Watson C, Moore Z, Patton D, McEvoy NL, Curley G, O’Connor T. The impact of brain tissue oxygenation monitoring on the Glasgow Outcome Scale/Glasgow Outcome Scale Extended in patients with moderate to severe traumatic brain injury: A systematic review. Nurs Crit Care. 2023. https://doi.org/10.1111/nicc.12973.

Article  PubMed  Google Scholar 

McDonald BZ, Tarudji AW, Zhang H, Ryu S, Eskridge KM, Kievit FM. Traumatic brain injury heterogeneity affects cell death and autophagy. Exp Brain Res. 2024;242(7):1645–58. https://doi.org/10.1007/s00221-024-06856-1.

Article  PubMed  Google Scholar 

de Macedo FL, Figueredo LF, Villegas-Gomez GA, Arthur M, Pedraza-Ciro MC, Martins H, Kanawati Neto J, Hawryluk GJ, Amorim RLO. Pathophysiology-based management of secondary injuries and insults in TBI. Biomedicines. 2024;12(3):520. https://doi.org/10.3390/biomedicines12030520.

Article  CAS  Google Scholar 

Simon DW, McGeachy MJ, Bayır H, Clark RS, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171–91. https://doi.org/10.1038/nrneurol.2017.13. (Erratum in: Nat Rev Neurol. 2017 Sep;13(9):572. 10.1038/nrneurol.2017.116).

Article  PubMed Central  PubMed  Google Scholar 

Kennedy E, Panahi S, Stewart IJ, Tate DF, Wilde EA, Kenney K, Werner JK, Gill J, Diaz-Arrastia R, Amuan M, Van Cott AC, Pugh MJ. Traumatic brain injury and early onset dementia in post 9–11 veterans. Brain Inj. 2022;36(5):620–7. https://doi.org/10.1080/02699052.2022.2033846.

Article  PubMed Central  PubMed  Google Scholar 

Kornblith E, Bahorik A, Li Y, Peltz CB, Barnes DE, Yaffe K. Traumatic brain injury, cardiovascular disease, and risk of dementia among older US Veterans. Brain Inj. 2022;36(5):628–32. https://doi.org/10.1080/02699052.2022.2033842.

Article  PubMed Central  PubMed  Google Scholar 

Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal models of traumatic brain injury and assessment of injury severity. Mol Neurobiol. 2019;56(8):5332–45. https://doi.org/10.1007/s12035-018-1454-5.

Article  CAS  PubMed  Google Scholar 

Thapa K, Khan H, Singh TG, Kaur A. Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci. 2021;71(9):1725–42. https://doi.org/10.1007/s12031-021-01841-7.

Article  CAS  PubMed  Google Scholar 

Gao G, Wu X, Feng J, Hui J, Mao Q, Lecky F, Lingsma H, Maas AIR, Jiang J, China CENTER-TBI Registry Participants. Clinical characteristics and outcomes in patients with traumatic brain injury in China: a prospective, multicentre, longitudinal, observational study. Lancet Neurol. 2020;19(8):670–7. https://doi.org/10.1016/S1474-4422(20)30182-4.

Article  CAS  PubMed  Google Scholar 

O’leary RA, Nichol AD. Pathophysiology of severe traumatic brain injury. J Neurosurg Sci. 2018;62(5):542–8. https://doi.org/10.23736/S0390-5616.18.04501-0.

Article  PubMed  Google Scholar 

Bouras M, Asehnoune K, Roquilly A. Immune modulation after traumatic brain injury. Front Med (Lausanne). 2022;1(9):995044. https://doi.org/10.3389/fmed.2022.995044.

Article  Google Scholar 

Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95–112. https://doi.org/10.1038/s41577-019-0215-7.

Article  CAS  PubMed  Google Scholar 

Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano SV. The S100B protein: a multifaceted pathogenic factor more than a biomarker. Int J Mol Sci. 2023;24(11):9605. https://doi.org/10.3390/ijms24119605.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7. https://doi.org/10.1038/nature08780.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5. https://doi.org/10.1038/nature00858.

Article  CAS  PubMed  Google Scholar 

Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272–81. https://doi.org/10.4049/jimmunol.177.2.1272.

Article  CAS  PubMed  Google Scholar 

Shi H, Hua X, Kong D, Stein D, Hua F. Role of Toll-like receptor mediated signaling in traumatic brain injury. Neuropharmacology. 2019;145(Pt B):259–67. https://doi.org/10.1016/j.neuropharm.2018.07.022.

Article  CAS  PubMed  Google Scholar 

Kim JY, Kim JW, Yenari MA. Heat shock protein signaling in brain ischemia and injury. Neurosci Lett. 2020;10(715):134642. https://doi.org/10.1016/j.neulet.2019.134642.

Article  CAS  Google Scholar 

Rosa JM, Farré-Alins V, Ortega MC, Navarrete M, Lopez-Rodriguez AB, Palomino-Antolín A, Fernández-López E, Vila-Del Sol V, Decouty C, Narros-Fernández P, Clemente D, Egea J. TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br J Pharmacol. 2021;178(17):3395–413. https://doi.org/10.1111/bph.15488.

Article  CAS  PubMed  Google Scholar 

Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014;258:5–16. https://doi.org/10.1016/j.expneurol.2014.01.001.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73. https://doi.org/10.1128/CMR.00046-08. (Table of Contents).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci. 2022;43(9):726–39. https://doi.org/10.1016/j.tips.2022.05.004.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9. https://doi.org/10.1016/j.molmed.2007.09.002.

Article  CAS  PubMed  Google Scholar 

Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034. https://doi.org/10.1101/cshperspect.a000034.

Article  CAS  PubMed Central  PubMed 

Comments (0)

No login
gif