Optical detection probes and sensors for micro-/nano-plastics

Alonso-Vázquez P, Luján-Facundo M-J, Cuartas-Uribe B, Bes-Piá A, Alonso-Molina J-L, Mendoza-Roca J-A (2023) Advances in analysis of microplastics in drinking water treatment plants. Fluorescence techniques using iDye Pink. Environ Technol Innov 32:103430. https://doi.org/10.1016/j.eti.2023.103430

Article  CAS  Google Scholar 

Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Philos Trans R Soc Lond B Biol Sci 364:1977–1984. https://doi.org/10.1098/rstb.2008.0304

Article  CAS  Google Scholar 

Annangi B, Villacorta A, López-Mesas M, Fuentes-Cebrian V, Marcos R, Hernández A (2023) Hazard assessment of polystyrene nanoplastics in primary human nasal epithelial cells. Focus Autophagic Eff Biomol 13:220. https://doi.org/10.3390/biom13020220

Article  CAS  Google Scholar 

Aoki H (2022) Material-specific determination based on microscopic observation of single microplastic particles stained with fluorescent dyes. Sensors (basel) 22:3390. https://doi.org/10.3390/s22093390

Article  CAS  Google Scholar 

Asamoah BO, Kanyathare B, Roussey M, Peiponen K-E (2019) A prototype of a portable optical sensor for the detection of transparent and translucent microplastics in freshwater. Chemosphere 231:161–167. https://doi.org/10.1016/j.chemosphere.2019.05.114

Article  CAS  Google Scholar 

Awada A, Potter M, Wijerathne D, Gauld JW, Mutus B, Rondeau-Gagné S (2022) Conjugated polymer nanoparticles as a universal high-affinity probe for the selective detection of microplastics. ACS Appl Mater Interfaces 14:46562–46568. https://doi.org/10.1021/acsami.2c12338

Article  CAS  Google Scholar 

Behera A, Mahapatra SR, Majhi S, Misra N, Sharma R, Singh J, Singh RP, Pandey SS, Singh KR, Kerry RG (2023) Gold nanoparticle assisted colorimetric biosensors for rapid polyethylene terephthalate (PET) sensing for sustainable environment to monitor microplastics. Environ Res 234:116556. https://doi.org/10.1016/j.envres.2023.116556

Article  CAS  Google Scholar 

Ben-Jaber S, Peveler WJ, Quesada-Cabrera R, Cortés E, Sotelo-Vazquez C, Abdul-Karim N, Maier SA, Parkin IP (2016) Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat Commun 7:12189. https://doi.org/10.1038/ncomms12189

Article  CAS  Google Scholar 

Bertelà F, Battocchio C, Iucci G, Ceschin S, Di Lernia D, Mariani F, Di Giulio A, Muzzi M, Venditti I (2023) Dye-doped polymeric microplastics: light tools for bioimaging in test organisms. Polymers (basel) 15:3245. https://doi.org/10.3390/polym15153245

Article  CAS  Google Scholar 

Bhattacharyya KG, SenGupta S, Sarma GK (2014) Interactions of the dye, Rhodamine B with kaolinite and montmorillonite in water. Appl Clay Sci 99:7–17. https://doi.org/10.1016/j.clay.2014.07.012

Article  CAS  Google Scholar 

Bianco A, Carena L, Peitsaro N, Sordello F, Vione D, Passananti M (2023) Rapid detection of nanoplastics and small microplastics by Nile-Red staining and flow cytometry. Environ Chem Lett 21:647–653. https://doi.org/10.1007/s10311-022-01545-3

Article  CAS  Google Scholar 

Braun T, Ehrlich L, Henrich W, Koeppel S, Lomako I, Schwabl P, Liebmann B (2021) Detection of microplastic in human placenta and meconium in a clinical setting. Pharmaceutics 13:921. https://doi.org/10.3390/pharmaceutics13070921

Article  CAS  Google Scholar 

Caldwell J, Taladriz-Blanco P, Rothen-Rutishauser B, Petri-Fink A (2021) Detection of sub-micro- and nanoplastic particles on gold nanoparticle-based substrates through surface-enhanced Raman scattering (sers) spectroscopy. Nanomaterials 11:1149. https://doi.org/10.3390/nano11051149

Article  CAS  Google Scholar 

Camilli E, Pighin AF, Copello GJ, Villanueva ME (2024) Cobalt/carbon quantum dots core-shell nanoparticles as an improved catalyst for Fenton-like reaction. Nano-Struct Nano-Objects 37:101097. https://doi.org/10.1016/j.nanoso.2024.101097

Article  CAS  Google Scholar 

Capolungo C, Genovese D, Montalti M, Rampazzo E, Zaccheroni N, Prodi L (2021) Photoluminescence-based techniques for the detection of micro- and nanoplastics. Chemistry – A Eur J 27:17529–17541. https://doi.org/10.1002/chem.202102692

Article  CAS  Google Scholar 

Chaisrikhwun B, Ekgasit S, Pienpinijtham P (2023) Size-independent quantification of nanoplastics in various aqueous media using surfaced-enhanced Raman scattering. J Hazard Mater 442:130046. https://doi.org/10.1016/j.jhazmat.2022.130046

Article  CAS  Google Scholar 

Chan MY, Leng W, Vikesland PJ (2018) Surface-enhanced Raman spectroscopy characterization of salt-induced aggregation of gold nanoparticles. ChemPhysChem 19:24–28. https://doi.org/10.1002/cphc.201700798

Article  CAS  Google Scholar 

Chen Q, Wang J, Yao F, Zhang W, Qi X, Gao X, Liu Y, Wang J, Zou M, Liang P (2023) A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Microchim Acta 190:465. https://doi.org/10.1007/s00604-023-06044-y

Article  CAS  Google Scholar 

Cingolani M, Rampazzo E, Zaccheroni N, Genovese D, Prodi L (2022) Fluorogenic hyaluronan nanogels for detection of micro- and nanoplastics in water. Environ Sci: Nano 9:582–588. https://doi.org/10.1039/D1EN00684C

Article  CAS  Google Scholar 

Colson BC, Michel APM (2021) Flow-through quantification of microplastics using impedance spectroscopy. ACS Sens 6:238–244. https://doi.org/10.1021/acssensors.0c02223

Article  CAS  Google Scholar 

Cui F, Ye Y, Ping J, Sun X (2020) Carbon dots: Current advances in pathogenic bacteria monitoring and prospect applications. Biosens Bioelectron 156:112085. https://doi.org/10.1016/j.bios.2020.112085

Article  CAS  Google Scholar 

Diaz-Basantes MF, Conesa JA, Fullana A (2020) Microplastics in honey, beer, milk and refreshments in ecuador as emerging contaminants. Sustainability 12:5514. https://doi.org/10.3390/su12145514

Article  Google Scholar 

Du H, Ma H, Xing B (2022) Identification of naturally weathering microplastics and their interactions with ion dyes in aquatic environments. Mar Pollut Bull 174:113186. https://doi.org/10.1016/j.marpolbul.2021.113186

Article  CAS  Google Scholar 

Elsherif M, Salih AE, Muñoz MG, Alam F, AlQattan B, Antonysamy DS, Zaki MF, Yetisen AK, Park S, Wilkinson TD, Butt H (2022) Optical fiber sensors: working principle, applications, and limitations. Adv Photonics Res 3:2100371. https://doi.org/10.1002/adpr.202100371

Article  Google Scholar 

Erni-Cassola G, Gibson MI, Thompson RC, Christie-Oleza JA (2017) Lost, but found with Nile Red: a novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environ Sci Technol 51:13641–13648. https://doi.org/10.1021/acs.est.7b04512

Article  CAS  Google Scholar 

Esteve-Turrillas FA, Abad-Fuentes A (2013) Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosens Bioelectron 41:12–29. https://doi.org/10.1016/j.bios.2012.09.025

Article  CAS  Google Scholar 

Gao Z, Wontor K, Cizdziel J (2022) Labeling microplastics with fluorescent dyes for detection, recovery, and degradation experiments. Molecules 27:7415. https://doi.org/10.3390/molecules27217415

Article  CAS  Google Scholar 

Garrido Gamarro E, Constanzo V, (2022) Microplastics in food commodities : a food safety review on human exposure through dietary sources (Report). Food and Agriculture Organisation of the United Nations (FAO), Rome, Italy. https://doi.org/10.4060/cc2392en

Gidwani B, Sahu V, Shukla SS, Pandey R, Joshi V, Jain VK, Vyas A (2021) Quantum dots: prospectives, toxicity, advances and applications. J Drug Deliv Sci Technol 61:102308. https://doi.org/10.1016/j.jddst.2020.102308

Article  CAS  Google Scholar 

Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81:6285–6294. https://doi.org/10.1021/ac900308v

Article  CAS  Google Scholar 

Guo J, Zhang M, Yin Z, Ding C, Chen P, Gan W, Yu H, Sun Z (2022) Construction of black phosphorus nanosheets and Ag nanoparticles co-sensitized TiO2 nanorod arrays as high-performance SERS substrate and photocatalyst. Appl Surf Sci 592:153265. https://doi.org/10.1016/j.apsusc.2022.153265

Article  CAS  Google Scholar 

Han W, Lin Z (2012) Learning from “coffee rings”: ordered structures enabled by controlled evaporative self-assembly. Angew Chem Int Ed 51:1534–1546. https://doi.org/10.1002/anie.201104454

Article  CAS  Google Scholar 

Han B, Guo S, Jin S, Park E, Xue X, Chen L, Jung YM (2020) Improved charge transfer contribution by cosputtering Ag and ZnO. Nanomaterials 10:1455. https://doi.org/10.3390/nano10081455

Article  CAS  Google Scholar 

Comments (0)

No login
gif