MDA5 Is a Major Determinant of Developing Symptoms in Critically Ill COVID-19 Patients

Greenhalgh T et al (2021) Ten scientific reasons in support of airbourne transmission of SARS-CoV2. The Lancet 397(10285):1603–1605

Zhou P et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ziegler CGK et al (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181(5):1016-1035.e19

Article  PubMed  PubMed Central  CAS  Google Scholar 

Malone B et al (2022) Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol 23(1):21–39

Article  PubMed  CAS  Google Scholar 

Hoffmann M et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280

Article  PubMed  PubMed Central  CAS  Google Scholar 

Eymieux S et al (2021) Ultrastructural modifications induced by SARS-CoV-2 in Vero cells: a kinetic analysis of viral factory formation, viral particle morphogenesis and virion release. Cell Mol Life Sci 78(7):3565–3576

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vkovski P et al (2021) Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19(3):155–170

Article  PubMed  CAS  Google Scholar 

Li S et al (2020) SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct Target Ther 5(1):235

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chan JF et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223):514–523

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blanco-Melo D et al (2020) Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181(5):1036-1045.e9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lucas C et al (2020) Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584(7821):463–469

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim YM, Shin EC (2021) Type I and III interferon responses in SARS-CoV-2 infection. Exp Mol Med 53(5):750–760

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu Y et al (2021) SARS-CoV-2 Nsp5 demonstrates two distinct mechanisms targeting RIG-I and MAVS to evade the innate immune response. mBio 12(5):e0233521

Article  PubMed  Google Scholar 

Liu G et al (2021) ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat Microbiol 6(4):467–478

Article  PubMed  PubMed Central  CAS  Google Scholar 

Satoh T et al (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 107(4):1512–1517

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schreiber G (2017) The molecular basis for differential type I interferon signaling. J Biol Chem 292(18):7285–7294

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhou JH et al (2018) Type III interferons in viral infection and antiviral immunity. Cell Physiol Biochem 51(1):173–185

Article  PubMed  CAS  Google Scholar 

Odendall C, Kagan JC (2015) The unique regulation and functions of type III interferons in antiviral immunity. Curr Opin Virol 12:47–52

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wack A, Terczyńska-Dyla E, Hartmann R (2015) Guarding the frontiers: the biology of type III interferons. Nat Immunol 16(8):802–809

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee AJ, Ashkar AA (2018) The dual nature of type I and type II interferons. Front Immunol 9:2061

Article  PubMed  PubMed Central  Google Scholar 

Negishi H et al (2008) A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc Natl Acad Sci U S A 105(51):20446–20451

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vercammen E, Staal J, Beyaert R (2008) Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev 21(1):13–25

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lester SN, Li K (2014) Toll-like receptors in antiviral innate immunity. J Mol Biol 426(6):1246–1264

Article  PubMed  CAS  Google Scholar 

Moresco EM, Beutler B (2010) LGP2: positive about viral sensing. Proc Natl Acad Sci U S A 107(4):1261–1262

Article  PubMed  PubMed Central  CAS  Google Scholar 

Maarouf M et al (2018) Immune ecosystem of virus-infected host tissues. Int J Mol Sci 19(5):1379

Article  PubMed  PubMed Central  Google Scholar 

Rehwinkel J, Gack MU (2020) RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 20(9):537–551

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hoagland DA et al (2021) Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity 54(3):557-570.e5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Casanova JL, Anderson MS (2023) Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest 133(3):e166283

Park A, Iwasaki A (2020) Type I and type III interferons - induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27(6):870–878

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bastard P et al (2020) Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370(6515):eabd4585

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shi D et al (2024) Prevalence of neutralizing autoantibodies against type I interferon in a multicenter cohort of severe or critical COVID-19 cases in Shanghai. J Clin Immunol 44(3):80

Article  PubMed  PubMed Central 

Comments (0)

No login
gif