Zhang F, Zhang B, Ding H et al (2023) The oxysterol receptor EBI2 links innate and adaptive immunity to limit IFN response and systemic lupus erythematosus. Adv Sci (Weinh). https://doi.org/10.1002/advs.202207108
Article PubMed PubMed Central Google Scholar
Zhao Z, Zhu H, Li Q et al (2022) Skin CD4+ Trm cells distinguish acute cutaneous lupus erythematosus from localized discoid lupus erythematosus/subacute cutaneous lupus erythematosus and other skin diseases. J Autoimmun 128:102811. https://doi.org/10.1016/j.jaut.2022.102811
Article CAS PubMed Google Scholar
Relle M, Weinmann-Menke J, Scorletti E et al (2015) Genetics and novel aspects of therapies in systemic lupus erythematosus. Autoimmun Rev 14:1005–1018. https://doi.org/10.1016/j.autrev.2015.07.003
Article CAS PubMed Google Scholar
Crow MK (2023) Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 82:999–1014. https://doi.org/10.1136/ard-2022-223741
Article CAS PubMed Google Scholar
Uppala R, Tsoi LC, Harms PW et al (2021) “Autoinflammatory psoriasis”-genetics and biology of pustular psoriasis. Cell Mol Immunol 18:307–317. https://doi.org/10.1038/s41423-020-0519-3
Article CAS PubMed Google Scholar
Lynch MD, Watt FM (2018) Fibroblast heterogeneity: implications for human disease. J Clin Invest 128:26–35. https://doi.org/10.1172/JCI93555
Article PubMed PubMed Central Google Scholar
Buechler MB, Pradhan RN, Krishnamurty AT et al (2021) Cross-tissue organization of the fibroblast lineage. Nature 593:575–579. https://doi.org/10.1038/s41586-021-03549-5
Article CAS PubMed Google Scholar
Plikus MV, Wang X, Sinha S et al (2021) Fibroblasts: origins, definitions, and functions in health and disease. Cell 184:3852–3872. https://doi.org/10.1016/j.cell.2021.06.024
Article CAS PubMed PubMed Central Google Scholar
Chen SX, Zhang L-J, Gallo RL (2019) Dermal white adipose tissue: a newly recognized layer of skin innate defense. J Invest Dermatol 139:1002–1009. https://doi.org/10.1016/j.jid.2018.12.031
Article CAS PubMed Google Scholar
Harper RA, Grove G (1979) Human skin fibroblasts derived from papillary and reticular dermis: differences in growth potential in vitro. Science 204:526–527. https://doi.org/10.1126/science.432659
Article CAS PubMed Google Scholar
Philippeos C, Telerman SB, Oulès B et al (2018) Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J Invest Dermatol 138:811–825. https://doi.org/10.1016/j.jid.2018.01.016
Article CAS PubMed PubMed Central Google Scholar
Solé-Boldo L, Raddatz G, Schütz S et al (2020) Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol 3:188. https://doi.org/10.1038/s42003-020-0922-4
Article CAS PubMed PubMed Central Google Scholar
Capolupo L, Khven I, Lederer AR et al (2022) Sphingolipids control dermal fibroblast heterogeneity. Science 376:eabh1623. https://doi.org/10.1126/science.abh1623
Article CAS PubMed Google Scholar
Cavagnero KJ, Li F, Dokoshi T et al (2024) CXCL12+ dermal fibroblasts promote neutrophil recruitment and host defense by recognition of IL-17. J Exp Med 221:e20231425. https://doi.org/10.1084/jem.20231425
Article CAS PubMed PubMed Central Google Scholar
Guo D, Li X, Wang J et al (2024) Single-cell RNA-seq reveals keratinocyte and fibroblast heterogeneity and their crosstalk via epithelial-mesenchymal transition in psoriasis. Cell Death Dis 15:207. https://doi.org/10.1038/s41419-024-06583-z
Article CAS PubMed PubMed Central Google Scholar
Deng C-C, Hu Y-F, Zhu D-H et al (2021) Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat Commun 12:3709. https://doi.org/10.1038/s41467-021-24110-y
Article CAS PubMed PubMed Central Google Scholar
Zhang L-J, Chen SX, Guerrero-Juarez CF et al (2019) Age-related loss of innate immune antimicrobial function of dermal fat is mediated by transforming growth factor beta. Immunity 50:121-136.e5. https://doi.org/10.1016/j.immuni.2018.11.003
Article CAS PubMed Google Scholar
Zhang L-J, Guerrero-Juarez CF, Chen SX et al (2021) Diet-induced obesity promotes infection by impairment of the innate antimicrobial defense function of dermal adipocyte progenitors. Sci Transl Med 13:eabb5280. https://doi.org/10.1126/scitranslmed.abb5280
Article CAS PubMed PubMed Central Google Scholar
O’Neill AM, Liggins MC, Seidman JS et al (2022) Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci Transl Med 14:eabh1478. https://doi.org/10.1126/scitranslmed.abh1478
Article CAS PubMed PubMed Central Google Scholar
Bapat SP, Whitty C, Mowery CT et al (2022) Obesity alters pathology and treatment response in inflammatory disease. Nature 604:337–342. https://doi.org/10.1038/s41586-022-04536-0
Article CAS PubMed PubMed Central Google Scholar
Tabib T, Huang M, Morse N et al (2021) Myofibroblast transcriptome indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin. Nat Commun 12:4384. https://doi.org/10.1038/s41467-021-24607-6
Article CAS PubMed PubMed Central Google Scholar
Goss G, Rognoni E, Salameti V, Watt FM (2021) Distinct fibroblast lineages give rise to NG2+ pericyte populations in mouse skin development and repair. Front Cell Dev Biol 9:675080. https://doi.org/10.3389/fcell.2021.675080
Article PubMed PubMed Central Google Scholar
Jiang D, Christ S, Correa-Gallegos D et al (2020) Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nat Commun 11:5653. https://doi.org/10.1038/s41467-020-19425-1
Article CAS PubMed PubMed Central Google Scholar
Rosa I, Romano E, Fioretto BS et al (2023) Lymphatic endothelial-to-myofibroblast transition: a potential new mechanism underlying skin fibrosis in systemic sclerosis. Cells-basel 12:2195. https://doi.org/10.3390/cells12172195
Kim S-W, Im G-B, Jeong G-J et al (2021) Delivery of a spheroids-incorporated human dermal fibroblast sheet increases angiogenesis and M2 polarization for wound healing. Biomaterials 275:120954. https://doi.org/10.1016/j.biomaterials.2021.120954
Article CAS PubMed Google Scholar
Shams F, Moravvej H, Hosseinzadeh S et al (2022) Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: in vitro and in vivo studies. Sci Rep 12:18529. https://doi.org/10.1038/s41598-022-23304-8
Article CAS PubMed PubMed Central Google Scholar
Mauroux A, Joncour P, Brassard-Jollive N et al (2023) Papillary and reticular fibroblasts generate distinct microenvironments that differentially impact angiogenesis. Acta Biomater 168:210–222. https://doi.org/10.1016/j.actbio.2023.06.040
Comments (0)