Fibroblast: A Novel Target for Autoimmune and Inflammatory Skin Diseases Therapeutics

Zhang F, Zhang B, Ding H et al (2023) The oxysterol receptor EBI2 links innate and adaptive immunity to limit IFN response and systemic lupus erythematosus. Adv Sci (Weinh). https://doi.org/10.1002/advs.202207108

Article  PubMed  PubMed Central  Google Scholar 

Zhao Z, Zhu H, Li Q et al (2022) Skin CD4+ Trm cells distinguish acute cutaneous lupus erythematosus from localized discoid lupus erythematosus/subacute cutaneous lupus erythematosus and other skin diseases. J Autoimmun 128:102811. https://doi.org/10.1016/j.jaut.2022.102811

Article  CAS  PubMed  Google Scholar 

Relle M, Weinmann-Menke J, Scorletti E et al (2015) Genetics and novel aspects of therapies in systemic lupus erythematosus. Autoimmun Rev 14:1005–1018. https://doi.org/10.1016/j.autrev.2015.07.003

Article  CAS  PubMed  Google Scholar 

Crow MK (2023) Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 82:999–1014. https://doi.org/10.1136/ard-2022-223741

Article  CAS  PubMed  Google Scholar 

Uppala R, Tsoi LC, Harms PW et al (2021) “Autoinflammatory psoriasis”-genetics and biology of pustular psoriasis. Cell Mol Immunol 18:307–317. https://doi.org/10.1038/s41423-020-0519-3

Article  CAS  PubMed  Google Scholar 

Lynch MD, Watt FM (2018) Fibroblast heterogeneity: implications for human disease. J Clin Invest 128:26–35. https://doi.org/10.1172/JCI93555

Article  PubMed  PubMed Central  Google Scholar 

Buechler MB, Pradhan RN, Krishnamurty AT et al (2021) Cross-tissue organization of the fibroblast lineage. Nature 593:575–579. https://doi.org/10.1038/s41586-021-03549-5

Article  CAS  PubMed  Google Scholar 

Plikus MV, Wang X, Sinha S et al (2021) Fibroblasts: origins, definitions, and functions in health and disease. Cell 184:3852–3872. https://doi.org/10.1016/j.cell.2021.06.024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen SX, Zhang L-J, Gallo RL (2019) Dermal white adipose tissue: a newly recognized layer of skin innate defense. J Invest Dermatol 139:1002–1009. https://doi.org/10.1016/j.jid.2018.12.031

Article  CAS  PubMed  Google Scholar 

Harper RA, Grove G (1979) Human skin fibroblasts derived from papillary and reticular dermis: differences in growth potential in vitro. Science 204:526–527. https://doi.org/10.1126/science.432659

Article  CAS  PubMed  Google Scholar 

Philippeos C, Telerman SB, Oulès B et al (2018) Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J Invest Dermatol 138:811–825. https://doi.org/10.1016/j.jid.2018.01.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solé-Boldo L, Raddatz G, Schütz S et al (2020) Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol 3:188. https://doi.org/10.1038/s42003-020-0922-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capolupo L, Khven I, Lederer AR et al (2022) Sphingolipids control dermal fibroblast heterogeneity. Science 376:eabh1623. https://doi.org/10.1126/science.abh1623

Article  CAS  PubMed  Google Scholar 

Cavagnero KJ, Li F, Dokoshi T et al (2024) CXCL12+ dermal fibroblasts promote neutrophil recruitment and host defense by recognition of IL-17. J Exp Med 221:e20231425. https://doi.org/10.1084/jem.20231425

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo D, Li X, Wang J et al (2024) Single-cell RNA-seq reveals keratinocyte and fibroblast heterogeneity and their crosstalk via epithelial-mesenchymal transition in psoriasis. Cell Death Dis 15:207. https://doi.org/10.1038/s41419-024-06583-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng C-C, Hu Y-F, Zhu D-H et al (2021) Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat Commun 12:3709. https://doi.org/10.1038/s41467-021-24110-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L-J, Chen SX, Guerrero-Juarez CF et al (2019) Age-related loss of innate immune antimicrobial function of dermal fat is mediated by transforming growth factor beta. Immunity 50:121-136.e5. https://doi.org/10.1016/j.immuni.2018.11.003

Article  CAS  PubMed  Google Scholar 

Zhang L-J, Guerrero-Juarez CF, Chen SX et al (2021) Diet-induced obesity promotes infection by impairment of the innate antimicrobial defense function of dermal adipocyte progenitors. Sci Transl Med 13:eabb5280. https://doi.org/10.1126/scitranslmed.abb5280

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Neill AM, Liggins MC, Seidman JS et al (2022) Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci Transl Med 14:eabh1478. https://doi.org/10.1126/scitranslmed.abh1478

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bapat SP, Whitty C, Mowery CT et al (2022) Obesity alters pathology and treatment response in inflammatory disease. Nature 604:337–342. https://doi.org/10.1038/s41586-022-04536-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tabib T, Huang M, Morse N et al (2021) Myofibroblast transcriptome indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin. Nat Commun 12:4384. https://doi.org/10.1038/s41467-021-24607-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goss G, Rognoni E, Salameti V, Watt FM (2021) Distinct fibroblast lineages give rise to NG2+ pericyte populations in mouse skin development and repair. Front Cell Dev Biol 9:675080. https://doi.org/10.3389/fcell.2021.675080

Article  PubMed  PubMed Central  Google Scholar 

Jiang D, Christ S, Correa-Gallegos D et al (2020) Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nat Commun 11:5653. https://doi.org/10.1038/s41467-020-19425-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosa I, Romano E, Fioretto BS et al (2023) Lymphatic endothelial-to-myofibroblast transition: a potential new mechanism underlying skin fibrosis in systemic sclerosis. Cells-basel 12:2195. https://doi.org/10.3390/cells12172195

Article  CAS  Google Scholar 

Kim S-W, Im G-B, Jeong G-J et al (2021) Delivery of a spheroids-incorporated human dermal fibroblast sheet increases angiogenesis and M2 polarization for wound healing. Biomaterials 275:120954. https://doi.org/10.1016/j.biomaterials.2021.120954

Article  CAS  PubMed  Google Scholar 

Shams F, Moravvej H, Hosseinzadeh S et al (2022) Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: in vitro and in vivo studies. Sci Rep 12:18529. https://doi.org/10.1038/s41598-022-23304-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mauroux A, Joncour P, Brassard-Jollive N et al (2023) Papillary and reticular fibroblasts generate distinct microenvironments that differentially impact angiogenesis. Acta Biomater 168:210–222. https://doi.org/10.1016/j.actbio.2023.06.040

Article 

Comments (0)

No login
gif