Grayson M (2011) Biofuels. Nature 474:S1–S1. https://doi.org/10.1038/474S01a
Article CAS PubMed Google Scholar
Comelli R, Benzzo M, Leonardi R et al (2023) Chapter 4. Agro-industrial wastewaters as feedstocks: new research on bioethanol production. In: Gorawala P, Mandhatri S (eds) Agricultural research updates, vol 43. Nova Science Publishers, NY (ISBN: 979-8-88697-550-5)
Nakanishi SC, Soares LB, Biazi LE et al (2017) Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis. Biotechnol Bioeng 114:2211–2221. https://doi.org/10.1002/bit.26357
Article CAS PubMed Google Scholar
Singh A, Singh A (2022) Microbial degradation and value addition to food and agriculture waste. Curr Microbiol 79:119. https://doi.org/10.1007/s00284-022-02809-5
Article CAS PubMed Google Scholar
Ali S, Rana Q, ul A, Riaz F et al (2024) Agricultural waste management by production of second-generation bioethanol from sugarcane bagasse using indigenous yeast strain. Curr Microbiol 81:161. https://doi.org/10.1007/s00284-024-03668-y
Article CAS PubMed Google Scholar
Singh A, Pant D, Korres NE et al (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Biores Technol 101:5003–5012. https://doi.org/10.1016/j.biortech.2009.11.062
Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845. https://doi.org/10.1038/nature07190
Article CAS PubMed Google Scholar
Wang Y, Zhang Y, Cui Q et al (2024) Composition of lignocellulose hydrolysate in different biorefinery strategies: nutrients and inhibitors. Molecules 29:2275. https://doi.org/10.3390/molecules29102275
Article CAS PubMed PubMed Central Google Scholar
Gil Rolón M, Leonardi RJ, Bolzico BC et al (2023) Multi-response optimization of thermochemical pretreatment of soybean hulls for 2G-bioethanol production. Fermentation 9:454. https://doi.org/10.3390/fermentation9050454
Li H, Wu M, Xu L et al (2015) Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production. Microb Biotechnol 8:266–274. https://doi.org/10.1111/1751-7915.12245
Article CAS PubMed PubMed Central Google Scholar
Moysés DN, Reis VCB, de Almeida JRM et al (2016) Xylose fermentation by saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17:207. https://doi.org/10.3390/ijms17030207
Article CAS PubMed PubMed Central Google Scholar
Bolzico BC, Racca S, Khawam JN et al (2024) Exploring xylose metabolism in non-conventional yeasts: kinetic characterization and product accumulation under different aeration conditions. J Ind Microbiol Biotechnol 51:kuae023. https://doi.org/10.1093/jimb/kuae023
Article CAS PubMed PubMed Central Google Scholar
Hct V, Ns P, Jrm A (2017) Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microb Cell Factor. https://doi.org/10.1186/s12934-017-0766-x
Melake T, Passoth V, Klinner U (1996) Characterization of the genetic system of the xylose-fermenting yeast Pichia stipitis. Curr Microbiol 33:237–242. https://doi.org/10.1007/s002849900106
Article CAS PubMed Google Scholar
Rodrigues RCLB, Sene L, Matos GS et al (2006) Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol 53:53–59. https://doi.org/10.1007/s00284-005-0242-4
Article CAS PubMed Google Scholar
Zhao Z, Xian M, Liu M, Zhao G (2020) Biochemical routes for uptake and conversion of xylose by microorganisms. Biotechnol Biofuels 13:21. https://doi.org/10.1186/s13068-020-1662-x
Article CAS PubMed PubMed Central Google Scholar
Wiegel J, Carreira L, Mothershed CP, Puls J (1983) Production of ethanol from biopolymers by anaerobic, thermophilic, and extreme thermophilic bacteria. III. Thermoanaerobacter ethanolicus JW200 and its mutants in batch cultures and resting cell experiments. Biotechnol Bioeng Symp (United States), vol 13; Conference: 5. Symposium on biotechnology for fuels and chemicals, Gatlinburg, TN, USA, 10 May 1983
Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94:205–214. https://doi.org/10.1007/s00253-011-3694-4
Article CAS PubMed Google Scholar
da Cunha-Pereira F, Hickert LR, Sehnem NT et al (2011) Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations. Bioresour Technol 102:4218–4225. https://doi.org/10.1016/j.biortech.2010.12.060
Article CAS PubMed Google Scholar
Campos VJ, Ribeiro LE, Albuini FM et al (2022) Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol. Braz J Microbiol 53:977–990. https://doi.org/10.1007/s42770-022-00693-6
Article CAS PubMed PubMed Central Google Scholar
Harner NK, Wen X, Bajwa PK et al (2015) Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 42:1–20. https://doi.org/10.1007/s10295-014-1535-z
Article CAS PubMed Google Scholar
APHA (1995) Standard Methods for the Examination of Water and Wastewater. 19th edn, American Public Health Association Inc, New York
Comelli RN, Seluy LG, Isla MA (2016) Optimization of a low-cost defined medium for alcoholic fermentation–a case study for potential application in bioethanol production from industrial wastewaters. New Biotechnol 33:107–115. https://doi.org/10.1016/j.nbt.2015.09.001
Isla MA, Comelli RN, Seluy LG (2013) Wastewater from the soft drinks industry as a source for bioethanol production. Bioresour Technol 136:140–147. https://doi.org/10.1016/j.biortech.2013.02.089
Article CAS PubMed Google Scholar
Ribeiro LE, Albuini FM, Castro AG et al (2021) Influence of glucose on xylose metabolization by Spathaspora passalidarum. Fungal Genet Biol 157:103624. https://doi.org/10.1016/j.fgb.2021.103624
Article CAS PubMed Google Scholar
Geistlinger L, Csaba G, Dirmeier S et al (2013) A comprehensive gene regulatory network for the diauxic shift in Saccharomyces cerevisiae. Nucl Acids Res 41:8452–8463. https://doi.org/10.1093/nar/gkt631
Article CAS PubMed PubMed Central Google Scholar
Bonan CIDG, Biazi LE, Dionísio SR et al (2020) Redox potential as a key parameter for monitoring and optimization of xylose fermentation with yeast Spathaspora passalidarum under limited-oxygen conditions. Bioprocess Biosyst Eng 43:1509–1519. https://doi.org/10.1007/s00449-020-02344-2
Article CAS PubMed Google Scholar
Kurylenko O, Ruchala J, Kruk B et al (2021) The role of Mig1, Mig2, Tup1 and Hap4 transcription factors in regulation of xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha. FEMS Yeast Res 21:foab029. https://doi.org/10.1093/femsyr/foab029
Article CAS PubMed Google Scholar
Cheng C, Tang R-Q, Xiong L et al (2018) Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae. Biotechnol Biofuels 11:28. https://doi.org/10.1186/s13068-018-1018-y
Article CAS PubMed PubMed Central Google Scholar
Rodrussamee N, Sattayawat P, Yamada M (2018) Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2. BMC Microbiol 18:73. https://doi.org/10.1186/s12866-018-1218-4
Comments (0)