Assessing Process Conditions on Xylose Fermentation in Spathaspora passalidarum: Effects of pH, Substrate-to-Inoculum Ratio, Temperature, and Initial Ethanol Concentration

Grayson M (2011) Biofuels. Nature 474:S1–S1. https://doi.org/10.1038/474S01a

Article  CAS  PubMed  Google Scholar 

Comelli R, Benzzo M, Leonardi R et al (2023) Chapter 4. Agro-industrial wastewaters as feedstocks: new research on bioethanol production. In: Gorawala P, Mandhatri S (eds) Agricultural research updates, vol 43. Nova Science Publishers, NY (ISBN: 979-8-88697-550-5)

Google Scholar 

Nakanishi SC, Soares LB, Biazi LE et al (2017) Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis. Biotechnol Bioeng 114:2211–2221. https://doi.org/10.1002/bit.26357

Article  CAS  PubMed  Google Scholar 

Singh A, Singh A (2022) Microbial degradation and value addition to food and agriculture waste. Curr Microbiol 79:119. https://doi.org/10.1007/s00284-022-02809-5

Article  CAS  PubMed  Google Scholar 

Ali S, Rana Q, ul A, Riaz F et al (2024) Agricultural waste management by production of second-generation bioethanol from sugarcane bagasse using indigenous yeast strain. Curr Microbiol 81:161. https://doi.org/10.1007/s00284-024-03668-y

Article  CAS  PubMed  Google Scholar 

Singh A, Pant D, Korres NE et al (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Biores Technol 101:5003–5012. https://doi.org/10.1016/j.biortech.2009.11.062

Article  CAS  Google Scholar 

Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845. https://doi.org/10.1038/nature07190

Article  CAS  PubMed  Google Scholar 

Wang Y, Zhang Y, Cui Q et al (2024) Composition of lignocellulose hydrolysate in different biorefinery strategies: nutrients and inhibitors. Molecules 29:2275. https://doi.org/10.3390/molecules29102275

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gil Rolón M, Leonardi RJ, Bolzico BC et al (2023) Multi-response optimization of thermochemical pretreatment of soybean hulls for 2G-bioethanol production. Fermentation 9:454. https://doi.org/10.3390/fermentation9050454

Article  CAS  Google Scholar 

Li H, Wu M, Xu L et al (2015) Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production. Microb Biotechnol 8:266–274. https://doi.org/10.1111/1751-7915.12245

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moysés DN, Reis VCB, de Almeida JRM et al (2016) Xylose fermentation by saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17:207. https://doi.org/10.3390/ijms17030207

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolzico BC, Racca S, Khawam JN et al (2024) Exploring xylose metabolism in non-conventional yeasts: kinetic characterization and product accumulation under different aeration conditions. J Ind Microbiol Biotechnol 51:kuae023. https://doi.org/10.1093/jimb/kuae023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hct V, Ns P, Jrm A (2017) Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microb Cell Factor. https://doi.org/10.1186/s12934-017-0766-x

Article  Google Scholar 

Melake T, Passoth V, Klinner U (1996) Characterization of the genetic system of the xylose-fermenting yeast Pichia stipitis. Curr Microbiol 33:237–242. https://doi.org/10.1007/s002849900106

Article  CAS  PubMed  Google Scholar 

Rodrigues RCLB, Sene L, Matos GS et al (2006) Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol 53:53–59. https://doi.org/10.1007/s00284-005-0242-4

Article  CAS  PubMed  Google Scholar 

Zhao Z, Xian M, Liu M, Zhao G (2020) Biochemical routes for uptake and conversion of xylose by microorganisms. Biotechnol Biofuels 13:21. https://doi.org/10.1186/s13068-020-1662-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiegel J, Carreira L, Mothershed CP, Puls J (1983) Production of ethanol from biopolymers by anaerobic, thermophilic, and extreme thermophilic bacteria. III. Thermoanaerobacter ethanolicus JW200 and its mutants in batch cultures and resting cell experiments. Biotechnol Bioeng Symp (United States), vol 13; Conference: 5. Symposium on biotechnology for fuels and chemicals, Gatlinburg, TN, USA, 10 May 1983

Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94:205–214. https://doi.org/10.1007/s00253-011-3694-4

Article  CAS  PubMed  Google Scholar 

da Cunha-Pereira F, Hickert LR, Sehnem NT et al (2011) Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations. Bioresour Technol 102:4218–4225. https://doi.org/10.1016/j.biortech.2010.12.060

Article  CAS  PubMed  Google Scholar 

Campos VJ, Ribeiro LE, Albuini FM et al (2022) Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol. Braz J Microbiol 53:977–990. https://doi.org/10.1007/s42770-022-00693-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harner NK, Wen X, Bajwa PK et al (2015) Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 42:1–20. https://doi.org/10.1007/s10295-014-1535-z

Article  CAS  PubMed  Google Scholar 

APHA (1995) Standard Methods for the Examination of Water and Wastewater. 19th edn, American Public Health Association Inc, New York

Comelli RN, Seluy LG, Isla MA (2016) Optimization of a low-cost defined medium for alcoholic fermentation–a case study for potential application in bioethanol production from industrial wastewaters. New Biotechnol 33:107–115. https://doi.org/10.1016/j.nbt.2015.09.001

Article  CAS  Google Scholar 

Isla MA, Comelli RN, Seluy LG (2013) Wastewater from the soft drinks industry as a source for bioethanol production. Bioresour Technol 136:140–147. https://doi.org/10.1016/j.biortech.2013.02.089

Article  CAS  PubMed  Google Scholar 

Ribeiro LE, Albuini FM, Castro AG et al (2021) Influence of glucose on xylose metabolization by Spathaspora passalidarum. Fungal Genet Biol 157:103624. https://doi.org/10.1016/j.fgb.2021.103624

Article  CAS  PubMed  Google Scholar 

Geistlinger L, Csaba G, Dirmeier S et al (2013) A comprehensive gene regulatory network for the diauxic shift in Saccharomyces cerevisiae. Nucl Acids Res 41:8452–8463. https://doi.org/10.1093/nar/gkt631

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonan CIDG, Biazi LE, Dionísio SR et al (2020) Redox potential as a key parameter for monitoring and optimization of xylose fermentation with yeast Spathaspora passalidarum under limited-oxygen conditions. Bioprocess Biosyst Eng 43:1509–1519. https://doi.org/10.1007/s00449-020-02344-2

Article  CAS  PubMed  Google Scholar 

Kurylenko O, Ruchala J, Kruk B et al (2021) The role of Mig1, Mig2, Tup1 and Hap4 transcription factors in regulation of xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha. FEMS Yeast Res 21:foab029. https://doi.org/10.1093/femsyr/foab029

Article  CAS  PubMed  Google Scholar 

Cheng C, Tang R-Q, Xiong L et al (2018) Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae. Biotechnol Biofuels 11:28. https://doi.org/10.1186/s13068-018-1018-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrussamee N, Sattayawat P, Yamada M (2018) Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2. BMC Microbiol 18:73. https://doi.org/10.1186/s12866-018-1218-4

Article  CAS 

Comments (0)

No login
gif