Ahmadi FA, Grammatopoulos TN, Poczobutt AM, Jones SM, Snell LD, Das M, Zawada WM (2008) Dopamine selectively sensitizes dopaminergic neurons to rotenone-induced apoptosis. Neurochem Res 33(5):886–901. https://doi.org/10.1007/s11064-007-9532-5
Article CAS PubMed Google Scholar
Adomshick V, Pu Y, Veiga-Lopez A (2020) Automated lipid droplet quantification system for phenotypic analysis of adipocytes using Cell Profiler. Toxicol Mech Methods 30(5):378–387. https://doi.org/10.1080/15376516.2020.1747124
Article CAS PubMed PubMed Central Google Scholar
Ali N, Sane MS, Tang H, Compher J, McLaughlin Q, Jones CD, Maffi SK (2023) 6-hydroxydopamine affects multiple pathways to induce cytotoxicity in differentiated LUHMES dopaminergic neurons. Neurochem Int 170:105608. https://doi.org/10.1016/j.neuint.2023.105608
Article CAS PubMed Google Scholar
Ali H, Jabeen A, Maharjan R, Nadeem-Ul-Haque M, Aamra H, Nazir S, Khan S, Olleik H, Maresca M, & Shaheen F (2020). Furan-Conjugated Tripeptides as Potent Antitumor Drugs. Biomolecules, 10(12). https://doi.org/10.3390/biom10121684
Bhurtel S, Katila N, Srivastav S, Neupane S, Choi DY (2019) Mechanistic comparison between MPTP and rotenone neurotoxicity in mice. Neurotoxicology 71:113–121. https://doi.org/10.1016/j.neuro.2018.12.009
Article CAS PubMed Google Scholar
Binolfi A, Limatola A, Verzini S, Kosten J, Theillet FX, Rose HM, Bekei B, Stuiver M, van Rossum M, Selenko P (2016) Intracellular repair of oxidation-damaged alpha-synuclein fails to target C-terminal modification sites. Nat Commun 7:10251. https://doi.org/10.1038/ncomms10251
Article CAS PubMed PubMed Central Google Scholar
Bisbal M, Sanchez M (2019) Neurotoxicity of the pesticide rotenone on neuronal polarization: a mechanistic approach. Neural Regen Res 14(5):762–766. https://doi.org/10.4103/1673-5374.249847
Article CAS PubMed PubMed Central Google Scholar
Borland MK, Trimmer PA, Rubinstein JD, Keeney PM, Mohanakumar K, Liu L, Bennett JP Jr (2008) Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol Neurodegener 3:21. https://doi.org/10.1186/1750-1326-3-21
Article CAS PubMed PubMed Central Google Scholar
Brakedal B, Toker L, Haugarvoll K, Tzoulis C (2022) A nationwide study of the incidence, prevalence and mortality of Parkinson’s disease in the Norwegian population. NPJ Parkinsons Dis 8(1):19. https://doi.org/10.1038/s41531-022-00280-4
Article PubMed PubMed Central Google Scholar
Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. FEBS J 277(1):2–21. https://doi.org/10.1111/j.1742-4658.2009.07366.x
Article CAS PubMed Google Scholar
Christensen ML, Braunstein TH, Treiman M (2008) Fluorescence assay for mitochondrial permeability transition in cardiomyocytes cultured in a microtiter plate. Anal Biochem 378(1):25–31. https://doi.org/10.1016/j.ab.2008.03.042
Article CAS PubMed Google Scholar
Coogan AN, O’Leary DM, O’Connor JJ (1999) P42/44 MAP kinase inhibitor PD98059 attenuates multiple forms of synaptic plasticity in rat dentate gyrus in vitro. J Neurophysiol 81(1):103–110. https://doi.org/10.1152/jn.1999.81.1.103
Article CAS PubMed Google Scholar
Dhennin-Duthille I, Masson M, Damiens E, Fillebeen C, Spik G, Mazurier J (2000) Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. J Cell Biochem 79(4):583–593 (https://www.ncbi.nlm.nih.gov/pubmed/10996849)
Article CAS PubMed Google Scholar
Dian LH, Hu YJ, Lin JY, Zhang JY, Yan Y, Cui YN, Su ZB, Lu WL (2018) Fabrication of paclitaxel hybrid nanomicelles to treat resistant breast cancer via oral administration. Int J Nanomedicine 13:719–731. https://doi.org/10.2147/IJN.S150140
Article CAS PubMed PubMed Central Google Scholar
Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491. https://doi.org/10.3233/JPD-130230
Article CAS PubMed PubMed Central Google Scholar
Dorra EG, Aida E, Zaineb D, Imene BT, Fairouz S, Aicha S, Josse L, Leila CG (2021) Luteolin Induced Apoptosis and Blockage of P-Glycoprotein in Human Sarcoma Cell Lines. Cancer Ther Oncol Intl J 18(5):555997. https://doi.org/10.19080/CTOIJ.2021.18.555997
Edlich F (2018) BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem Biophys Res Commun 500(1):26–34. https://doi.org/10.1016/j.bbrc.2017.06.190
Article CAS PubMed Google Scholar
Eker F, Bolat E, Pekdemir B, Duman H, Karav S (2023) Lactoferrin: neuroprotection against Parkinson’s disease and secondary molecule for potential treatment. Front Aging Neurosci 15:1204149. https://doi.org/10.3389/fnagi.2023.1204149
Article CAS PubMed PubMed Central Google Scholar
Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337
Article CAS PubMed PubMed Central Google Scholar
Ferlazzo N, Curro M, Giunta ML, Longo D, Rizzo V, Caccamo D, Ientile R (2020) Up-regulation of HIF-1alpha is associated with neuroprotective effects of agmatine against rotenone-induced toxicity in differentiated SH-SY5Y cells. Amino Acids 52(2):171–179. https://doi.org/10.1007/s00726-019-02759-6
Article CAS PubMed Google Scholar
Fillebeen C, Dehouck B, Benaissa M, Dhennin-Duthille I, Cecchelli R, Pierce A (1999a) Tumor necrosis factor-alpha increases lactoferrin transcytosis through the blood-brain barrier. J Neurochem 73(6):2491–2500. https://doi.org/10.1046/j.1471-4159.1999.0732491.x
Article CAS PubMed Google Scholar
Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaissa M, Spik G, Cecchelli R, Pierce A (1999b) Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem 274(11):7011–7017. https://doi.org/10.1074/jbc.274.11.7011
Article CAS PubMed Google Scholar
Fillebeen C, Mitchell V, Dexter D, Benaissa M, Beauvillain J, Spik G, Pierce A (1999c) Lactoferrin is synthesized by mouse brain tissue and its expression is enhanced after MPTP treatment. Brain Res Mol Brain Res 72(2):183–194. https://doi.org/10.1016/s0169-328x(99)00221-1
Article CAS PubMed Google Scholar
Fillebeen C, Ruchoux MM, Mitchell V, Vincent S, Benaissa M, Pierce A (2001) Lactoferrin is synthesized by activated microglia in the human substantia nigra and its synthesis by the human microglial CHME cell line is upregulated by tumor necrosis factor alpha or 1-methyl-4-phenylpyridinium treatment. Brain Res Mol Brain Res 96(1–2):103–113. https://doi.org/10.1016/s0169-328x(01)00216-9
Article CAS PubMed Google Scholar
Galaris D, Barbouti A, Pantopoulos K (2019) Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res 1866(12):118535. https://doi.org/10.1016/j.bbamcr.2019.118535
Article CAS PubMed Google Scholar
Giannakis A, Chondrogiorgi M, Tsironis C, Tatsioni A, Konitsiotis S (2018) Levodopa-induced dyskinesia in Parkinson’s disease: still no proof? A Meta-Analysis J Neural Transm (Vienna) 125(9):1341–1349. https://doi.org/10.1007/s00702-018-1841-0
Article CAS PubMed Google Scholar
Giordano S, Lee J, Darley-Usmar VM, Zhang J (2012) Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death. PLoS ONE 7(9):e44610. https://doi.org/10.1371/journal.pone.0044610
Comments (0)