Dakkak YJ, Jansen FP, DeRuiter MC, Reijnierse M, van der Helm-van Mil AHM. Rheumatoid arthritis and tenosynovitis at the metatarsophalangeal joints: an anatomic and MRI study of the forefoot tendon sheaths. Radiology. 2020;295(1):146–54.
Micu MC, Fodor D. Concepts in monitoring the treatment in rheumatoid arthritis—the role of musculoskeletal ultrasound. Part I: synovitis. Med Ultrason. 2015;17(3):367–76.
Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8(11):656–64.
Article CAS PubMed PubMed Central Google Scholar
Hetland ML, Ejbjerg B, Hørslev-Petersen K, Jacobsen S, Vestergaard A, Jurik AG, et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann Rheum Dis. 2009;68(3):384–90.
Article CAS PubMed Google Scholar
Carotti M, Galeazzi V, Catucci F, Zappia M, Arrigoni F, Barile A, et al. Clinical utility of eco-color-power Doppler ultrasonography and contrast enhanced magnetic resonance imaging for interpretation and quantification of joint synovitis: a review. Acta Biomed. 2018;89(1-S):48–77.
PubMed PubMed Central Google Scholar
Burke CJ, Alizai H, Beltran LS, Regatte RR. MRI of synovitis and joint fluid. J Magn Reson Imaging. 2019;49(6):1512–27.
Article PubMed PubMed Central Google Scholar
Ostergaard M, Boesen M. Imaging in rheumatoid arthritis: the role of magnetic resonance imaging and computed tomography. Radiol Med. 2019;124(11):1128–41.
Kirkhus E, Bjornerud A, Thoen J, Johnston V, Dale K, Smith HJ. Contrast-enhanced dynamic magnetic resonance imaging of finger joints in osteoarthritis and rheumatoid arthritis: an analysis based on pharmacokinetic modeling. Acta Radiol. 2006;47(8):845–51.
Article CAS PubMed Google Scholar
Wojciechowski W, Tabor Z, Urbanik A. Assessing synovitis based on dynamic gadolinium-enhanced MRI and EULAR-OMERACT scores of the wrist in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2013;31(6):850–6.
Kobayashi Y, Kamishima T, Sugimori H, Ichikawa S, Noguchi A, Kono M, et al. Quantification of hand synovitis in rheumatoid arthritis: arterial mask subtraction reinforced with mutual information can improve accuracy of pixel-by-pixel time–intensity curve shape analysis in dynamic MRI. J Magn Reson Imaging. 2018;48(3):687–94.
Sakashita T, Kamishima T, Kobayashi Y, Sugimori H, Tang M, Sutherland K, et al. Accurate quantitative assessment of synovitis in rheumatoid arthritis using pixel-by-pixel, time-intensity curve shape analysis. Br J Radiol. 2016;89(1061):20151000.
Article PubMed PubMed Central Google Scholar
van de Sande MG, van der Leij C, Lavini C, Wijbrandts CA, Maas M, Tak PP. Characteristics of synovial inflammation in early arthritis analysed by pixel-by-pixel time-intensity curve shape analysis. Rheumatology (Oxford). 2012;51(7):1240–5.
Lavini C, de Jonge MC, van de Sande MG, Tak PP, Nederveen AJ, Maas M. Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magn Reson Imaging. 2007;25(5):604–12.
Kijowski R, Liu F, Caliva F, Pedoia V. Deep learning for lesion detection, progression, and prediction of musculoskeletal disease. J Magn Reson Imaging. 2020;52(6):1607–19.
Wang H, Ou Y, Fang W, Ambalathankandy P, Goto N, Ota G, et al. A deep registration method for accurate quantification of joint space narrowing progression in rheumatoid arthritis. Comput Med Imaging Graph. 2023;108: 102273.
Liang H, Lu Y, Liu Q, Fu X. Fully automatic classification of cardiotocographic signals with 1D-CNN and bi-directional GRU. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:4590–4.
Hassan F, Hussain SF, Qaisar SM. Epileptic seizure detection using a hybrid 1D CNN-machine learning approach from EEG data. J Healthc Eng. 2022;2022:9579422.
Article PubMed PubMed Central Google Scholar
Hsieh CH, Li YS, Hwang BJ, Hsiao CH. Detection of atrial fibrillation using 1D convolutional neural network. Sensors (Basel). 2020;20(7):2136.
Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO III, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81.
Ostergaard M, Peterfy CG, Bird P, Gandjbakhch F, Glinatsi D, Eshed I, et al. The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system: updated recommendations by the OMERACT MRI in arthritis working group. J Rheumatol. 2017;44(11):1706–12.
Ito K, Nakajima H, Kobayashi K, Aoki T, Higuchi T. A fingerprint matching algorithm using phase-only correlation. IEICE Trans Fundam Electron Commun Comput Sci. 2004;87(3):682–91.
Reza AM. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Process Syst Signal Image Video Technol. 2004;38:35–44.
Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. ArXiv. 2018;abs/1803.01271.
van der Leij C, van de Sande MG, Lavini C, Tak PP, Maas M. Rheumatoid synovial inflammation: pixel-by-pixel dynamic contrast-enhanced MR imaging time-intensity curve shape analysis—a feasibility study. Radiology. 2009;253(1):234–40.
Ratner B. The correlation coefficient: its values range between +1/−1, or do they? J Target Meas Anal Mark. 2009;17(2):139–42.
Kubassova O, Boesen M, Cimmino MA, Bliddal H. A computer-aided detection system for rheumatoid arthritis MRI data interpretation and quantification of synovial activity. Eur J Radiol. 2010;74(3):e67–72.
Czaplicka K, Wojciechowski W, Wlodarczyk J, Urbanik A, Tabor Z. Automated assessment of synovitis in 0.2T magnetic resonance images of the wrist. Comput Biol Med. 2015;67:116–25.
Comments (0)