De Witt F. An historical study on theories of the placenta to 1900. J Hist Med Allied Sci. 1959;14:360–74. https://doi.org/10.1093/jhmas/xiv.7.360
Mandy GT. Delayed cord clamping: are we ready to listen to the doctor from 1796? J Perinatol. 2016;36:1–2. https://doi.org/10.1038/jp.2015.148
Article PubMed CAS Google Scholar
Jain A, Mohamed A, Kavanagh B, Shah PS, Kuipers BCW, El-Khuffash A, et al. Cardiopulmonary adaptation during first day of life in human neonates. J Pediatr. 2018;200:50–7.e2. https://doi.org/10.1016/j.jpeds.2018.04.051
Rabe H, Gyte GM, Díaz-Rossello JL, Duley L. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst Rev. 2019;9:CD003248 https://doi.org/10.1002/14651858.CD003248.pub4
Qian Y, Ying X, Wang P, Lu Z, Hua Y. Early versus delayed umbilical cord clamping on maternal and neonatal outcomes. Arch Gynecol Obstet. 2019;300:531–43. https://doi.org/10.1007/s00404-019-05215-8
Article PubMed PubMed Central Google Scholar
Seidler AL, Libesman S, Hunter KE, Barba A, Aberoumand M, Williams JG, et al. Short, medium, and long deferral of umbilical cord clamping compared with umbilical cord milking and immediate clamping at preterm birth: a systematic review and network meta-analysis with individual participant data. Lancet. 2023;402:2223–34. https://doi.org/10.1016/S0140-6736(23)02469-8.
Chapman J, Marfurt S, Reid J. Effectiveness of delayed cord clamping in reducing postdelivery complications in preterm infants: a systematic review. J Perinat Neonatal Nurs. 2016;30:372–8. https://doi.org/10.1097/JPN.0000000000000215
Fogarty M, Osborn DA, Askie L, Seidler AL, Hunter K, Lui K, et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218:1–18. https://doi.org/10.1016/j.ajog.2017.10.231
Andersson O, Lindquist B, Lindgren M, Stjernqvist K, Domellöf M, Hellström-Westas L. Effect of delayed cord clamping on neurodevelopment at 4 years of age: a randomized clinical trial. JAMA Pediatr. 2015;169:631–8. https://doi.org/10.1001/jamapediatrics.2015.0358
Lodha A, Shah PS, Soraisham AS, Rabi Y, Abou Mehrem A, Singhal N, et al. Association of deferred vs immediate cord clamping with severe neurological injury and survival in extremely low-gestational-age neonates. JAMA Netw Open. 2019;2:e191286 https://doi.org/10.1001/jamanetworkopen.2019.1286
Article PubMed PubMed Central Google Scholar
Mercer JS, Erickson-Owens DA, Vohr BR, Tucker RJ, Parker AB, Oh W, et al. Effects of placental transfusion on neonatal and 18 month outcomes in preterm infants: a randomized controlled trial. J Pediatr. 2016;168:50–5.e1. https://doi.org/10.1016/j.jpeds.2015.09.068
Sulyok E, Nemeth M, Tenyi I, IF Csaba, L Varga, F Varga. Relationship between the postnatal development of the reninangiotensin-aldosterone system and electrolyte and acid-base status of the NaCl-supplemented premature infants. In: Spizer A, (ed.): The Kidney during Development Morphogenesis and Function. New York: Masson; 1982: 273.
Walther T, Faber R, Maul B, Schultheiss H-P, Siems W-E, Stepan H, et al. Fetal, neonatal cord and maternal plasma concentrations of angiotensin converting enzyme (ACE). Prenat Diagn. 2002;22:111–3.
Article PubMed CAS Google Scholar
Bender JW, Davitt MK, Jose P. Angiotensin-1-converting enzyme activity in term and premature infants. Biol Neonate. 1978;34:19–23.
Article PubMed CAS Google Scholar
Bhatt S, Alison BJ, Wallace EM, Crossley KJ, Gill AW, Kluckow M, et al. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J Physiol. 2013;591:2113–26. https://doi.org/10.1113/jphysiol.2012.250084
Article PubMed PubMed Central CAS Google Scholar
Duley L, Gyte G. When should the umbilical cord be clamped? BMJ. 2015;351:h4206 https://doi.org/10.1136/bmj.h4206
Hofmeyr GJ, Bolton KD, Bowen DC, Govan JJ. Periventricular/intraventricular haemorrhage and umbilical cord clamping. Findings and hypothesis. S Afr Med J. 1988;73:104–6. Jan 23PMID: 3340910.
Haneline LS, Marshall KP, Clapp DW. The highest concentration of primitive hematopoietic progenitor cells in cord blood is found in extremely premature infants. Pediatr Res. 1996;39:820–5. https://doi.org/10.1203/00006450-199605000-00013
Article PubMed CAS Google Scholar
McDonald SJ, Middleton P, Dowswell T, Morris PS. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst Rev. 2013;2013:CD004074 https://doi.org/10.1002/14651858.CD004074.pub3
Article PubMed PubMed Central Google Scholar
Harer MW, McAdams RM, Conaway M, Vergales BD, Hyatt DM, Charlton JR. Delayed umbilical cord clamping is not associated with acute kidney injury in very low birth weight neonates. Am J Perinatol. 2020;37:210–5. https://doi.org/10.1055/s-0039-1697671
Juul SE, Comstock BA, Wadhawan R, Mayock DE, Courtney SE, Robinson T, et al. A randomized trial of erythropoietin for neuroprotection in preterm infants. N Engl J Med. 2020;382:233–43. https://doi.org/10.1056/NEJMoa1907423
Article PubMed PubMed Central CAS Google Scholar
Hingorani S, Schmicker R, Ahmad KA, Frantz ID, Mayock DE, La Gamma EF, et al. Prevalence and risk factors for kidney disease and elevated BP in 2-year-old children born extremely premature. Clin J Am Soc Nephrol. 2022;17:1129–38. https://doi.org/10.2215/CJN.15011121
Article PubMed PubMed Central Google Scholar
Juul SE, Mayock DE, Comstock BA, Heagerty PJ. Neuroprotective potential of erythropoietin in neonates; design of a randomized trial. Matern Health Neonatol Perinatol. 2015;1:27.
Article PubMed PubMed Central Google Scholar
Harer MW, Griffin R, Askenazi DJ, Fuloria M, Guillet R, Hanna M. et al. Caffeine and kidney function at two years in former extremely low gestational age neonates. Pediatr Res. 2023. https://doi.org/10.1038/s41390-023-02792-y
Starr MC, Griffin RL, Harer MW, Soranno DE, Gist KM, Segar JL, et al. Acute kidney injury defined by fluid-corrected creatinine in premature neonates: a secondary analysis of the PENUT randomized clinical trial. JAMA Netw Open. 2023;6:e2328182 https://doi.org/10.1001/jamanetworkopen.2023.28182
Article PubMed PubMed Central Google Scholar
Askenazi DJ, Heagerty PJ, Schmicker RH, Griffin R, Brophy P, Juul SE, et al. Prevalence of acute kidney injury (AKI) in extremely low gestational age neonates (ELGAN). Pediatr Nephrol. 2020;35:1737–48. https://doi.org/10.1007/s00467-020-04563-x
Article PubMed PubMed Central Google Scholar
Zappitelli M, Ambalavanan N, Askenazi DJ, Moxey-Mims MM, Kimmel PL, Star RA, et al. Developing a neonatal acute kidney injury research definition: a report from the NIDDK neonatal AKI workshop. Pediatr Res. 2017;82:569–73. https://doi.org/10.1038/pr.2017.136
Article PubMed PubMed Central Google Scholar
Askenazi DJ, Heagerty PJ, Schmicker RH, Brophy P, Juul SE, Goldstein SL, et al. The impact of erythropoietin on short- and long-term kidney-related outcomes in neonates of extremely low gestational age. results of a multicenter, double-blind, placebo-controlled randomized clinical trial. J Pediatr. 2021;232:65–72.e67.
Article PubMed PubMed Central CAS Google Scholar
Hingorani S, Schmicker RH, Brophy PD, Heagerty PJ, Juul SE, Goldstein SL, et al. Severe acute kidney injury and mortality in extremely low gestational age neonates. Clin J Am Soc Nephrol. 2021;16:862–9. https://doi.org/10.2215/CJN.18841220
Article PubMed PubMed Central Google Scholar
Pierce CB, Muñoz A, Ng DK, Warady BA, Furth SL, Schwartz GJ. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int. 2021;99:948–56. https://doi.org/10.1016/j.kint.2020.10.047
Comments (0)