Jarc, E., & Petan, T. (2020). A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie, 169, 69–87.
Article CAS PubMed Google Scholar
Welte, M. A., & Gould, A. P. (2017). Lipid droplet functions beyond energy storage. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1862, 1260–1272.
Article CAS PubMed Google Scholar
Wölk, M., & Fedorova, M. (2024). The lipid droplet lipidome. FEBS Letters. https://doi.org/10.1002/1873-3468.14874
Thiam, A. R., & Ikonen, E. (2021). Lipid droplet nucleation. Trends in Cell Biology, 31, 108–118.
Article CAS PubMed Google Scholar
Mansuri, S., Mahalingavelar, P., Soppina, V., & Kanvah, S. (2024). A two-in-one probe: Imaging lipid droplets and endoplasmic reticulum in tandem. Journal of Materials Chemistry B, 12, 2028–2041.
Article CAS PubMed Google Scholar
Li, Y., Wang, Y., Li, Y., Shi, W., & Yan, J. (2024). Construction and evaluation of near-infrared fluorescent probes for imaging lipid droplet and lysosomal viscosity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 316, 124356.
Article CAS PubMed Google Scholar
Pei, S., Li, H., Chen, L., Nie, G., Wang, H., Liu, C., & Zhang, C. (2024). Dual-functional AIE fluorescent probe for visualization of lipid droplets and photodynamic therapy of cancer. Analytical Chemistry, 96, 5615–5624.
Article CAS PubMed Google Scholar
Xu, N., Qiao, Q., Fang, X., Wang, G., An, K., Jiang, W., Li, J., & Xu, Z. (2024). Solvatochromic buffering fluorescent probe resolves the lipid transport and morphological changes during lipid droplet fusion by super-resolution imaging. Analytical Chemistry, 96, 4709–4715.
Article CAS PubMed Google Scholar
Wu, S., Li, X., Zhou, M., Cui, Y., Wu, W., Ping, J., Guo, X., & Hu, Q. (2024). pH-triggered hydrophility-adjustable fluorescent probes for simultaneously imaging lipid droplets and lysosomes and the application in fatty liver detection. Biosensors & Bioelectronics, 251, 116084.
He, D., Yan, M., Sun, Q., Zhang, M., Xia, Y., Sun, Y., & Li, Z. (2024). Ketocyanine-based fluorescent probe revealing the polarity heterogeneity of lipid droplets and enabling accurate diagnosis of hepatocellular carcinoma. Advanced Healthcare Materials, 13, 230.
Li, M.-N., Zhao, J.-Y., Zhang, G., Xu, Y.-J., Ge, J.-F., & Sun, R. (2023). Naphthyridine-based neutral fluorescent probes for dynamic monitoring lipid droplet polarity. Dyes and Pigments, 220, 111731.
Zhou, R., Liu, G., Li, D., Wang, T., Yan, X., Liu, F., Sun, P., Wang, C., & Lu, G. (2023). An advanced organic molecular probe for multimodal fluorescence imaging of cellular lipid droplets. Sensors and Actuators, B: Chemical, 387, 133772.
Hickey, S. M., Johnson, I. R. D., Dallerba, E., Hackett, M. J., Massi, M., Lazniewska, J., Thurgood, L. A., Pfeffer, F. M., Brooks, D. A., & Ashton, T. D. (2023). A fluorescent and solvatochromic 1,8-naphthalimide probe for detection of lipid droplet trafficking and biogenesis. Dyes and Pigments, 217, 111382.
Zhou, R., Wang, C., Liang, X., Liu, F., Sun, P., Yan, X., Jia, X., Liu, X., Wang, Y., & Lu, G. (2023). A new organic molecular probe as a powerful tool for fluorescence imaging and biological study of lipid droplets. Theranostics, 13, 95–105.
Article CAS PubMed PubMed Central Google Scholar
Gidda, S. K., Park, S., Pyc, M., Yurchenko, O., Cai, Y., Wu, P., Andrews, D. W., Chapman, K. D., Dyer, J. M., & Mullen, R. T. (2016). Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiology, 170, 2052–2071.
Article CAS PubMed PubMed Central Google Scholar
Ischebeck, T., Krawczyk, H. E., Mullen, R. T., Dyer, J. M., & Chapman, K. D. (2020). Lipid droplets in plants and algae: Distribution, formation, turnover and function. Seminars in Cell and Developmental Biology, 108, 82–93.
Article CAS PubMed Google Scholar
Kachroo, P., & Kachroo, A. (2020). Lipid-Modulated Trafficking in Plants. Molecular Plant, 13, 351–353.
Article CAS PubMed Google Scholar
Violon, C., Dekegel, D., & Vercruysse, A. (1983). Microscopical study of valepotriates in lipid droplets of various tissues from valerian plants. Plant Cell Reports, 2, 300–303.
Article CAS PubMed Google Scholar
Sengupta, A., Dhar, J., Danza, F., Ghoshal, A., Müller, S., & Kakavand, N. (2022). Active reconfiguration of cytoplasmic lipid droplets governs migration of nutrient-limited phytoplankton. Science Advances, 8, eabn6005.
Article CAS PubMed Google Scholar
Pyc, M., Cai, Y., Gidda, S. K., Yurchenko, O., Park, S., Kretzschmar, F. K., Ischebeck, T., Valerius, O., Braus, G. H., Chapman, K. D., Dyer, J. M., & Mullen, R. T. (2017). Arabidopsis lipid droplet-associated protein (LDAP) – interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. The Plant Journal, 92, 1182–1201.
Article CAS PubMed Google Scholar
Pyc, M., Cai, Y., Greer, M. S., Yurchenko, O., Chapman, K. D., Dyer, J. M., & Mullen, R. T. (2017). Turning over a new leaf in lipid droplet biology. Trends Plant Science, 22, 596–609.
Wei, D., Dai, Y., Cao, J., & Fu, N. (2024). A novel fluorescent probe for visualizing viscosity changes in lipid droplets during chemotherapy-induced ferroptosis. Analytica Chimica Acta, 1299, 342422.
Article CAS PubMed Google Scholar
Ma, J., Sun, R., Xia, K., Xia, Q., Liu, Y., & Zhang, X. (2024). Design and application of fluorescent probes to detect cellular physical microenvironments. Chemical Reviews, 124, 1738–1861.
Article CAS PubMed Google Scholar
Song, C. W., Tamima, U., Reo, Y. J., Dai, M., Sarkar, S., & Ahn, K. H. (2019). A rationally designed polarity–viscosity sensitive probe for imaging lipid droplets. Dyes and Pigments, 171, 107718.
Duangkamol, C., Muangsopa, P., Rattanopas, S., Wongsuwan, P., Khrootkaew, T., Chueakwon, P., Niamnont, N., Chansaenpak, K., & Kamkaew, A. (2023). Polarity and viscosity-sensitive fluorescence probes for lipid droplet imaging in cancer cells. Dyes and Pigments, 216, 111365.
Jimenez-Sanchez, A., Lei, E. K., & Kelley, S. O. (2018). A multifunctional chemical probe for the measurement of local micropolarity and microviscosity in mitochondria. Angewandte Chemie International Edition, 57, 8891–8895.
Article CAS PubMed Google Scholar
Li, Y.-Y., Hu, J.-L., Wu, J.-R., Wang, Y.-R., Zhang, A.-H., Tan, Y.-W., Shang, Y.-J., Liang, T., Li, M., Meng, Y.-L., & Kang, Y.-F. (2024). Multifunctional fluorescence probe for simultaneous detection of viscosity, polarity, and ONOO− and its bioimaging in vitro and vivo. Biosensors & Bioelectronics, 254, 116233.
Li, R., Guo, J., Duan, Y., Liu, X., Gui, L., Xu, Y., Kong, X., Li, Y., Chen, H., & Yuan, Z. (2022). Monitoring inflammation-cancer progression by cell viscosity, polarity and leucine aminopeptidase using multicolor fluorescent probe. Chemical Engineering Journal, 435, 135043.
Chao, M., Zhang, H., Hu, Q., Ma, S., Cui, X., Zhu, X., Zhang, J., & Yu, X. (2024). A novel π-bridge rationally designed polarity–viscosity-sensitive probe for lipid imaging. Dyes and Pigments, 225, 112088.
Zuo, Y., Gou, Z., & Lin, W. (2024). olymeric microenvironment enhancing polarity response sensitivity for discriminating lipid droplets in cancer cells. Analytica Chimica Acta, 1297, 342330.
Article CAS PubMed Google Scholar
Ma, L., Zan, Q., Zhang, B., Zhang, W., Jia, C., & Fan, L. (2024). A multi-functional fluorescent probe for visualization of H2S and viscosity/polarity and its application in cancer imaging. Analytical and Bioanalytical Chemistry, 416, 1375–1387.
Comments (0)