Allué-Guardia A, García JI, Torrelles JB. Evolution of drug-resistant mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front Microbiol. 2021;12:1–21.
WHO. Global tuberculosis report 2023 [Internet]. WHO. 2023. Available from: https://www.who.int/publications/i/item/9789240083851.
Quenard F, Fournier PE, Drancourt M, Brouqui P. Role of second-line injectable antituberculosis drugs in the treatment of MDR/XDR tuberculosis. Int J Antimicrob Agents. 2017;50:252–4.
Article CAS PubMed Google Scholar
Bendre AD, Peters PJ, Kumar J. Tuberculosis: past, present and future of the treatment and drug discovery research. Curr Res Pharmacol Drug Discov. 2021;2:100037.
Article PubMed PubMed Central Google Scholar
Wang MG, Wu SQ, He JQ. Efficacy of bedaquiline in the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis BioMed Central. 2021;21:1–10.
Nguyen TVA, Anthony RM, Bañuls AL, Vu DH, Alffenaar JWC. Bedaquiline resistance: its emergence, mechanism, and prevention. Clin Infect Dis. 2018;66:1625–30.
Fujiwara M, Kawasaki M, Hariguchi N, Liu Y, Matsumoto M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis. 2018;108:186–94.
Article CAS PubMed Google Scholar
Vangapandu S, Jain M, Jain R, Kaur S, Singh PP. Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorganic Med Chem. 2004;12:2501–8.
Mandewale MC, Patil UC, Shedge SV, Dappadwad UR, Yamgar RS. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni-Suef Univ J Basic Appl Sci. 2017;6:354–61.
Upadhayaya RS, Vandavasi JK, Kardile RA, Lahore SV, Dixit SS, Deokar HS, et al. Novel quinoline and naphthalene derivatives as potent antimycobacterial agents. Eur J Med Chem. 2010;45:1854–67.
Article CAS PubMed Google Scholar
Muscia GC, Buldain GY, Asís SE. Design, synthesis and evaluation of acridine and fused-quinoline derivatives as potential anti-tuberculosis agents. Eur J Med Chem. 2014;73:243–9.
Article CAS PubMed Google Scholar
Jain PP, Degani MS, Raju A, Anantram A, Seervi M, Sathaye S, et al. Identification of a novel class of quinoline-oxadiazole hybrids as anti-tuberculosis agents. Bioorganic Med Chem Lett. Elsevier Ltd. 2016;26:645–9.
Singh S, Kaur G, Mangla V, Gupta MK. Quinoline and quinolones: promising scaffolds for future antimycobacterial agents. J Enzyme Inhib Med Chem. 2015;30:492–504.
Article CAS PubMed Google Scholar
Liu B, Li F, Zhou T, Tang XQ, Hu GW. Quinoline derivatives with potential activity against multidrug-resistant tuberculosis. J Heterocycl Chem. 2018;55:1863–73.
Keri RS, Patil SA. Quinoline: a promising antitubercular target. Biomed Pharmacother. 2014;68:1161–75.
Article CAS PubMed Google Scholar
van Heeswijk RPG, Dannemann B, Hoetelmans RMW. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother. 2014;69:2310–8.
Lakshmanan M, Xavier AS. Bedaquiline—the first ATP synthase inhibitor against multi drug resistant tuberculosis. J Young Pharm. 2013;5:112–5.
Article CAS PubMed PubMed Central Google Scholar
Huitric E, Verhasselt P, Andries K, Hoffner SE. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother. 2007;51:4202–4.
Article CAS PubMed PubMed Central Google Scholar
Andries K, Verhasselt P, Guillemont J, Göhlmann HWH, Neefs JM, Winkler H, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:223–7.
Article CAS PubMed Google Scholar
Abdelrahman MA, Salama I, Gomaa MS, Elaasser MM, Abdel-Aziz MM, Soliman DH. Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. Eur J Med Chem. 2017;138:698–714.
Article CAS PubMed Google Scholar
Menteşe E, Bektaş H, Sokmen BB, Emirik M, Çakır D, Kahveci B. Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1H-benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease. Bioorganic Med Chem Lett. 2017;27:3014–8.
Jj C, Se A. Natural and synthetic quinoline derivatives as anti- tuberculosis agents. Austin Tuberc Res Treat. 2017;2:2–4.
Akula M, Sridevi JP, Yogeeswari P, Sriram D, Bhattacharya A. New class of antitubercular compounds: synthesis and anti-tubercular activity of 4-substituted pyrrolo[2,3-c]quinolines. Monatshefte fur Chemie. 2014;145:811–9.
Nayyar A, Malde A, Jain R, Coutinho E. 3D-QSAR study of ring-substituted quinoline class of anti-tuberculosis agents. Bioorganic Med Chem. 2006;14:847–56.
Kidwai S, Park C, Mawatwal S, Tiwari P, Jung MG, Gosain TP, et al. Dual mechanism of action of 5-Nitro-1,10- phenanthroline against mycobacterium tuberculosis. Antimicrob Agents Chemother. 2017;61:e00969–17.
Singh P, Rawat S, Agrahari AK, Singh M, Chugh S, Gurcha S, et al. NSC19723, a thiacetazone-like benzaldehyde thiosemicarbazone improves the efficacy of TB drugs in vitro and in vivo. Microbiol Spectr. 2022;10:e0259222.
Comments (0)