E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)
S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)
B. Liu, Y.F. Liu, C. Jia, X.D. He, All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide. AIP Adv. 6, 065316 (2016)
Rupali, S.K Sahu, G. Palai, B.A. Kumar, B.K. Mishra, Modelling of photonic crystal based ring resonator sensor for cancer detection using infrared laser, Journal of Optics, 1–7 (2024)
K. Swain, A. Vidyarthi, R. Satpathy, T.P Panigrahy, G. Palai, A machine learning-based biomedical sensor with help of 2D photonic crystal structure. J. f Opt. 1–8 (2024)
A. Das, PK. Panigrahi, G. Palai, R. Satpathy, Photonics-based high sensitivity sensor for investigation of heavy metal in industrial water. J. Opt. 1–9 (2024)
K.P. Swain, N. Shanmugavadivu, B. Vasudevan, S.K. Sahu, G. Palai, Realization of coronavirus testing kit using a combination of a triangular photonic crystal (PhC) structure and a 412 nm laser beam. Lasers Eng. 54, 265 (2023)
R. Basri, V. Dhasarathan, G. Palai, M.K. Alam, K.K. Ganji, M.S. Munisekhar, A versatile study on neuron deformation of brain through photonic structure. Alex. Eng. J. 71, 339–346 (2023)
K.K. Sethi, G. Palai, P. Sarkar, Realization of accurate blood glucose sensor using photonics based metamaterial. Optik 168, 296–301 (2019)
I.S. Amiri, P. Yupapin, G. Palai, Estimation of concentration of DNA and protein through PARD and modified analysis: a realization of an accurate biomedical device using photonic structure. Optik 182, 507–511 (2018)
M. Notomi, Negative refraction in photonic crystals. Opt. Quant. Electron. 34, 133–143 (2002)
M. Noori, M. Soroosh, H. Baghban, Self-collimation in photonic crystals: applications and opportunities. Ann. der Phys. 530(2), 1700049 (2018)
M.A. Butt, S.N. Khonina, N.L. Kazanskiy, An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 202, 163655 (2020)
M.A. Butt, S.N. Khonina, N.L. Kazanskiy, Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves in Random and Complex Media 30(2), 292–299 (2020)
Article ADS MathSciNet Google Scholar
M.A. Butt, N.L. Kazanskiy, S.N. Khonina, Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor. J. Modern Opt. 66(19), 1920–1925 (2019)
Y. Zhang, Y. Zhao, T. Zhou, Q. Wu, Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities. Lab Chip 18, 57–74 (2018)
N. Kazanskiy, M. Butt, One-dimensional photonic crystal waveguide based on the SOI platform for transverse magnetic polarization-maintaining devices”. Photonics Lett. Pol. 12(3), 85–87 (2020)
S.-P. Yu, J. Muniz, C.-L. Hung, H. Kimble, Two-dimensional photonic crystals for engineering atom-light interactions”. PNAS 116(26), 12743–12751 (2019)
T. Tajiri, S. Takahashi, Y. Ota, K. Watanabe, S. Iwamoto, Y. Arakawa, Three-dimensional photonic crystal simultaneously integrating a nanocavity laser and waveguides. Optica 6(3), 296–299 (2019)
M.A. Butt, N.L. Kazanskiy, S.N. Khonina, Modal characteristics of refractive index engineered hybrid plasmonic waveguide. IEEE Sens. J. 20(17), 9779–9786 (2020)
B.A. Kumar, S.K. Sahu, G. Palai, I. Bala, Modelling and performance analysis of ring resonator-based refractive-index sensor for bacterial water detection. Opt. Quant. Electron. 55(3), 263 (2023)
A. Kumar, S.K. Sahu, G. Palai, K.P. Swain, “Identification of Novel Coronavirus (n-CoV) using a two-dimensional (2-D) photonic crystal (PhC) structure and finite element method (FEM) via a violet laser beam. Lasers Eng. 53, 321–3315 (2022)
D.D. Pradhan, S. Das, G. Palai, M.M. Sardeshmukh, A simplified model and gain analysis of Raman-EDFA hybrid amplifier for DWDM system. Opt. Quant. Electron. 54(6), 382 (2022)
C.S. Queiroz, A.T. Hara, A.F.P. Leme, JA, Cury pH-cycling model to evaluate the effect of low fluoride dentifrice on enamel de- and remineralization. Braz. Dent. J. 19, 21–29 (2008)
A.M. Halusic, V.R. Sepich, D.C. Shirley, J.M. Granjeiro, M.C. Costa, E.C. Küchler, A.R. Vieira, Calcium and magnesium levels in primary tooth enamel and genetic variation in enamel formation genes Elliott JC, Wong FSL, Anderson P, Davies GR, Dowker SEP: Determination of mineral concentration in dental enamel from X-ray attenuation measurement. Connect Tissue Int. 38, 61–72 (1998)
F. Litzenburger, K. Heck, D. Kaisarly, K.H. Kunzelmann, Diagnostic validity of early proximal caries detection using near infrared imaging technology on 3D range data of posterior teeth. Clin. Oral Investig. 26, 543–553 (2022)
W.K. Liu, S. Li, H.S. Park, Eighty years of the finite element method: birth evolution and future. Arch. Comput. Methods. Eng. 29(6), 4431–4453 (2022)
Y.-S. Hsieh, Y.-C. Ho, S.-Y. Lee, C.-W. Lu, C.-P. Jiang, C.-C. Chuang, C.-Y. Wang, C.-W. Sun, Subgingival calculus imaging based on swept-source optical coherence tomography”. J. Biomed. Opt. 16(7), 071409 (2011)
Z. Meng, X.S. Yao, H. Yao, Y. Liang, T. Liu, Y. Li, G. Wang, S. Lan, Measurement of the refractive index of human teeth by optical coherence tomography. J. Biomed. Opt. 14(3), 034010 (2009)
D.T. Pierce, W.E. Spicer, Electronic structure of amorphous Si from photoemission and optical studies. Phys. Rev. B 5, 3017–3029 (1972)
EdwardD. Palik (ed.), Handbook of optical constants of solids (Academic Press, Boston, 1985)
Comments (0)