Characterizations and optical discussions of thermally evaporated titanium dioxide thin films

Y.-H. Chen, S.-K. Chiu, M.-C. Lai, P.-Y. Hsieh, J.-L. He, Tunable, graded band-gap TiO2 thin film solar cell deposited by HIPIMS on flexible substrate. Surf. Coat. Technol. 477, 130302 (2024). https://doi.org/10.1016/j.surfcoat.2023.130302

Article  Google Scholar 

M. Padmini, T. Balaganapathi, P. Thilakan, Mesoporous rutile TiO2: Synthesis, characterization and photocatalytic performance studies. Mater. Res. Bull. 144, 111480 (2021). https://doi.org/10.1016/j.materresbull.2021.111480

Article  Google Scholar 

J. Singh, A. Singh, K. Kumar, R.A. Zargari, Optical properties of TiO2 thin film dip coating method. J Nano Electron Phys 14(2), 02019 (2022). https://doi.org/10.21272/jnep.14

Article  Google Scholar 

S. Abdellatif, P. Sharifi, K. Kirah, R. Ghannam, A.S.G. Khalil, D. Erni, F. Marlow, Refractive index and scattering of porousTiO2 films. Micro Mezoporous Mater 264, 84–91 (2018). https://doi.org/10.1016/j.micromeso.2018.01.011

Article  Google Scholar 

T.C. Paul, M.H. Babu, J. Podder, B.C. Dev, S.K. Sen, S. Islam, Influence of Fe3+ ions doping on TiO2 thin films: defect generation, dd transition and band gap tuning for optoelectronic device applications. Phys. B. Conden. Matter. 1(604), 412618 (2021)

Article  Google Scholar 

T.C. Paul, J. Podder, M.H. Babu, Optical constants and dispersion energy parameters of Zn-doped TiO2 thin films prepared by spray pyrolysis technique. Surf. Interf. 21, 100725 (2020). https://doi.org/10.1016/j.surfin.2020.100725

Article  Google Scholar 

M. Lamy, M. M. Mennemanteuil, J. C. Weeber, C. Finot, K. Hammani, Exploring titanium dioxide as a new photonic platform. European conference on integrated optics, Ghent, Belgium, ‌hal-02085784‌, (2019)

J. Gangareddy, H. Syed, S. Chakraborty, P. Sen, M. Ghosh, K.K. Dey, K. Bhattacharyya, K. Annapurna, V.R. Soma, A.R. Allu, Tunable, efficient, ultrafast broadband nonlinear optical properties of TiO2–loaded complex phosphate glasses. Mater. Res. Bull. 167, 112414 (2023). https://doi.org/10.1016/j.materresbull.2023.112414

Article  Google Scholar 

A. Timoumi, O.O. Alameer, S.N. Alamri, Intensive study of coating multilayer TiO2 nanoparticles thin films used for optoelectronics devices. Result Mater 18, 100390 (2023). https://doi.org/10.1016/j.rinma.2023.100390

Article  Google Scholar 

T. Jia, J. Zhang, J. Wu, D. Wang, Q. Liu, Y. Qi, B. Hu, P. He, W. Pan, X. Qi, Synthesis amorphous TiO2 with oxygen vacancy as carriers transport channels for enhancing photocatalytic activity. Mater. Lett. 15(265), 127465 (2020)

Article  Google Scholar 

R. Amrani et al., Structural and optical properties of highly Ag-doped TiO2 thin films prepared by flash thermal evaporation. Phys. Scr. 99, 065914 (2024). https://doi.org/10.1088/1402-4896/ad4014

Article  ADS  Google Scholar 

P. Anilkumar, T. Kalaivani, S. Deepak, J. Jasmin, A.F. Abd El-Rehim, E.R. Kumar, Evaluation of structural, optical and morphological properties of La doped TiO2 nanoparticles. Ceram. Int. 49(11), 16991–16998 (2023)

Article  Google Scholar 

Y.M. Tsega, Effect of temperature sintering on grain growth and optical properties of TiO2 nanoparticles. J. Nanomater. 2023(1), 3098452 (2023). https://doi.org/10.1155/2023/3098452

Article  Google Scholar 

C. Garlisia, G. Scanduraa, J. Szlachetkob, S. Ahmadid, J. Sae, G. Palmisanoa, E-beam evaporated TiO2and Cu-TiO2on glass: Performance in thediscoloration of methylene blue and 2-propanol oxidation. Appl. Catal. A 526, 191–199 (2016). https://doi.org/10.1016/j.apcata.2016.08.022

Article  Google Scholar 

A. Haider, G. Ali, M.J. Haider, M.S. Edan, R. Al-Obaidy, A. Thamir, M.M. Hathal, E.M. Abbas, F. Al-Sheikh, Modification optical properties of TiO2 nanostructure as solar cell. Energy Rep. 8, 77–85 (2022). https://doi.org/10.1016/j.egyr.2022.06.097

Article  Google Scholar 

A.S. Hassanien, I. Sharma, Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15-x Sbx Se50 Te35 thin films: Influences of Sb upon some optical characterizations and physical parameters. J. Alloy. Compoun. 25(798), 750–763 (2019)

Article  Google Scholar 

A.K. Vishwakarma, N.K. Yadav, A.K. Sharma, P. Yadav, S.K. Yadav, L. Yadava, Morphological and electronic properties of titanium dioxide thin film materials today. Proceedings 42, 1642–1646 (2021). https://doi.org/10.1016/j.matpr.2020.07.474

Article  Google Scholar 

A. Ahad, J. Podder, F. Rahman, H.N. Das, Effect of Nickel doping on the Structural, Optical, and electrical properties of titanium dioxide thin films for the application of sensing devices. Result. Optic 13, 100579 (2023). https://doi.org/10.1016/j.rio.2023.100579

Article  Google Scholar 

A.T. Hassan, E.S. Hassan, O.M. Abdulmunem, Effect of thermal annealing on the structural and optical properties of TiO2 nanostructures. J. Mech. Behav. Mater. 30, 304–308 (2021). https://doi.org/10.1515/jmbm-2021-0033

Article  Google Scholar 

D. Komaraiah, E. Radha, J. Sivakumar, M.R. Reddy, R. Sayanna, Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Optic. Mater. 1(108), 110401 (2020)

Article  Google Scholar 

V. Mishra, M.K. Warshi, A. Sati, A. Kumar, V. Mishra, R. Kumar, P.R. Sagdeo, Investigation of temperature-dependent optical properties of TiO2 using diffuse reflectance spectroscopy. SN Appl. Sci. 1, 1–8 (2019)

Article  Google Scholar 

K. Mols, L. Aarik, H. Mandar, A. Kasikov, A. Niilisk, R. Rammula, J. Aarik, Influence of phase composition on optical properties of TiO2: Dependence of refractive index and band gap on formation of TiO2-II phase in thin films. Opt. Mater. 96, 109335 (2019). https://doi.org/10.1016/j.optmat.2019.109335

Article  Google Scholar 

P.R. Jubu, O.S. Obaseki, A. Nathan-Abutu, F.K. Yam, Y. Yusof, M.B. Ochang, Dispensability of the conventional Tauc’s plot for accurate bandgap determination from UV–vis optical diffuse reflectance data. Result. Optic. 1(9), 100273 (2022)

Article  Google Scholar 

A. Lamichhane, Energy-gap-refractive index relations in semiconductors using wemple–didomenico model to unify moss. Ravindra. Herve-Vandamme. Relationsh. Sol. 4, 316–326 (2023). https://doi.org/10.3390/solids4040020

Article  Google Scholar 

A.S. Hassanien, I. Sharma, P. Sharma, Inference of Sn addition on optical properties of the novel thermally evaporated thin a-Ge15Te50S35-xSnx films and some physical properties of their glasses. Mater. Chem. Phys. 293, 126887 (2023). https://doi.org/10.1016/j.matchemphys.2022.126887

Article  Google Scholar 

A.S. Hassanien, I. Sharma, P. Sharma, Optical and dispersion studies of thin S35-xGe15SnxTe50 films: assessment of some physical parameters of samples. Phys. Scr. 98(4), 045911 (2023). https://doi.org/10.1088/1402-4896/acc2f9

Article  ADS  Google Scholar 

A.S. Hassanien, I. Sharma, Synthesis, analysis, and characterization of structural and optical properties of thermally evaporated chalcogenide a-Cu-Zn-Ge-Se thin films. Mater. Chem. Phys. 311, 128524 (2024). https://doi.org/10.1016/j.matchemphys.2023.128524

Article  Google Scholar 

A. Fouzia, B. Rabah, The influence of doping lead and annealing temperature on grown of nanostructures of TiO2 thin films prepared by a sol-gel method. Mater. Sci. Eng. B 265, 114982 (2021). https://doi.org/10.1016/j.mseb.2020.114982

Article  Google Scholar 

S. Ebrahimi, B. Yarmand, Optimized optical band gap energy and Urbach tail of Cr2S3 thin films by Sn incorporation for optoelectronic applications. Phys. B 593, 412292 (2020). https://doi.org/10.1016/j.physb.2020.412292

Article  Google Scholar 

M.H. Nateq, R. Ceccato, Enhanced sol–gel route to obtain a highly transparent and conductive aluminum-doped zinc oxide thin film. Mater. 12(11), 1744 (2019)

Article  Google Scholar 

A.S. Hassanien, I.M. El Radaf, Effectiveness of Sn-addition on optical properties and physicochemical parameters of SnxSb2-xSe3 thin films. Mater. Chem. Phys. 303, 127827 (2023). https://doi.org/10.1016/j.matchemphys.2023.127827

Article  Google Scholar 

I.M. El-Radaf, A.S. Hassanien, Effect of thickness on structural, optical, and optoelectrical properties of sprayed CuInSnS4 thin films as a new absorber layer for solar cells. Phys. B 659, 414867 (2023). https://doi.org/10.1016/j.physb.2023.414867

Article  Google Scholar 

A.S. Hassanien, I.M. El Radaf, Effect of fluorine doping on the structural, optical, and electrical properties of spray deposited Sb2O3 thin films. Mater. Sci. Semicond. Process. 160, 107405 (2023). https://doi.org/10.1016/j.mssp.2023.107405

Article  Google Scholar 

A.S. Hassanien, A.A. Akl, I.M. El-Redaf, Optical characteristics of the novel nanosized thin ZnGa2S4 films sprayed at different deposition times: determination of optical band-gap energy using different methods. Emergen Mater. 6, 943–964 (2023). https://doi.org/10.1007/s00339-022-06127-2

Article  Google Scholar 

M. Allaham, R. Dallaev, D. Burda, D. Sobola, A. Nebojsa, A. Knápek, M.S. Mousa, V. Kolařík, Energy gap measurements based on enhanced absorption coefficient calculation from transmittance and reflectance raw data. Phys. Scr. 99, 025952 (2024). https://doi.org/10.1088/1402-4896/ad1cb8

Article  ADS  Google Scholar 

R. Özmenteş, Characterization of cupric oxide thin films prepared by nebulizer spray technique. Mater. Today. Proceed. 1(46), 6916–6919 (2021)

Article  Google Scholar 

J. Shanthi, S. Aishwarya, R. Swathi, Enhanced optical & structural properties by potassium iodide doping on spin coated TiO2 thin films. Chem. Data Collect. 29, 100494 (2020). https://doi.org/10.1016/j.cdc.2020.100494

Article  Google Scholar 

A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superl. Microstruct. 89, 153–169 (2016). https://doi.org/10.1016/j.spmi.2015.10.044

Comments (0)

No login
gif