World Health Organization. The global prevalence of anemia in 2011 [Internet]. Geneva: World Health Organization; 2015 [cited 2016 Nov 8]. 43 p. Available from: http://apps.who.int/iris/bitstream/10665/177094/1/9789241564960_eng.pdf?ua=1
World Health Organization. (2008). Worldwide prevalence of anemia 1993–2005 : WHO global database on anemia. / Edited by Bruno de Benoist, Erin McLean, Ines Egli and Mary Cogswell. World Health Organization. https://apps.who.int/iris/handle/10665/43894
World Health Organization. (2014). Global nutrition targets 2025: anemia policy brief. World Health Organization. https://apps.who.int/iris/handle/10665/148556
World Health Organization. (2011). Hemoglobin concentrations for the diagnosis of anemia and assessment of severity. World Health Organization. https://apps.who.int/iris/handle/10665/85839
C.A. Northrop-Clewes, D.I. Thurnham, Biomarkers for the differentiation of anemia and their clinical usefulness. J. Blood Med. 4, 11–22 (2013)
A. Mitani, A. Huang, S. Venugopalan, G.S. Corrado, L. Peng, D.R. Webster, N. Hammel, Y. Liu, A.V. Varadarajan, Detection of anemia from retinal fundus images via deep learning. Nat. Biomed. Eng. 4, 18–27 (2020)
A. Halder, P.K. Sarkar, P. Pal, S. Chakrabarti, P. Chakrabarti, D. Bhattacharyya, R. Chakraborty, S.K. Pal, Digital camera-based spectrometry for the development of point-of-care anemia detectionon ultra-low volume whole blood sample. IEEE Sens. J. 17(21), 7149–7155 (2017)
A. Kalantri, M. Karambelkar, R. Joshi, S. Kalantri, U. Jajoo, Accuracy and reliability of pallor for detecting anemia: a hospital-based diagnostic accuracy study. PLoS ONE 5, e8545 (2010)
L.F. Drager, J.M. Abe, M.A. Martins, P.A. Lotufo, I.J.M. Benseñor, Impact of clinical experience on quantification of clinical signs at physical examination. J. Intern. Med. 254, 257–263 (2003)
R.G. Mannino, Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nat. Commun. 9, 1–10 (2018)
Ankita, B. Suthar, A. Bhargava, Biosensor application of one-dimensional photonic crystal for malaria diagnosis. Plasmonics 16, 59–63 (2021)
S. Sharma, A. Kumar, Design of a biosensor for the detection of dengue virus using 1D photonic crystals. Plasmonics 17, 675–680 (2022)
S. Rasheed, T. Kanwal, N. Ahmad, B. Fatima, M. Najam-ul-Haq, D. Hussain, Advances and challenges in portable optical biosensors for onsite detection and point-of-care diagnostics. TrAC, Trends Anal. Chem. 173, 117640 (2024)
X. Qu, Y. Hu, C. Xu, Y. Li, L. Zhang, Q. Huang, Y. Fu, Optical sensors of volatile organic compounds for non-invasive diagnosis of diseases. Chem. Eng. J. 485, 149804 (2024)
J. Kraitl, H. Ewald, U. Timm: “Non-invasive measurement of blood components” IEEE fifth international Conference on Sensing Technology, (2011).
K.J. Jeon, S.J. Kim, K.K. Park, J.W. Kim, G. Yoon, Noninvasive total hemoglobin measurement. J. Biomed. Opt. 7, 45–50 (2002)
R.V. Nair, R. Vijaya, Photonic crystal sensors: an overview. Prog. Quantum Electron. 34, 89–134 (2010)
T.K. Aldrich, M. Moosikasuwan, S.D. Shah, K.S. Deshpande, Length-normalized pulse photoplethysmography: a noninvasive method to measure blood hemoglobin. Ann. Biomed. Eng. 30, 1291–1298 (2002)
J.D. Joannopoulos, Molding the flow of light (Princeton University Press, Princeton, 2008)
R. Ghosh, K.K. Ghosh, R. Chakraborty, Narrow band filter using 1D periodic structure with defects for DWDM systems. Opt. Commun. 289, 75–80 (2013)
S. Lodh, R. Ghosh, R. Chakraborty, Studies on high refractive index amorphous TiO2 thin film for possible improvement of light extraction efficiency in organic light emitting diodes. Opt. Eng. 59(10), 107104 (2020)
R. Ghosh, K.K. Ghosh, R. Chakraborty, High resolution wide range pressure sensor using hexagonal ring and micromachined cantilever tips on 2D silicon photonic crystal. Opt. Commun. 431, 93–100 (2019)
Y. Zhang, Y. Zhao, R. Lv, A review for optical sensors based on photonic crystal cavities. Sens. Actuators, A 233, 374–389 (2015)
A. Banerjee, Enhancement in sensitivity of blood glucose sensor by using 1D defect ternary photonic band gap structures. J. Opt. 48, 262–265 (2019)
Z. Gharsallah, High sensitivity and ultra-compact optical biosensor for detection of UREA concentration. Opt. Quant. Electron. 50, 1–10 (2018)
A. Rajendran, T. Suaganya, S. Robinson, Design and analysis of 2D photonic crystal-based biosensor to detect different blood components. Photonic Sensors 9, 69–77 (2019)
P. Sharma, P. Sharan, Design of photonic crystal-based ring resonator for detection of different blood constituents. Opt. Commun. 348, 19–23 (2015)
K.M. Abohassan, H.S. Ashour, M.M. Abadla, A 1D photonic crystal-based sensor for detection of cancerous blood cells. Opt. Quant. Electron. 53, 1–14 (2021)
M.M. Abadla, H.A. Elsayed, Detection and sensing of hemoglobin using one-dimensional binary photonic crystals comprising a defect layer. Appl. Opt. 59(2), 418–424 (2020)
A.H. Aly, D. Mohamed, M.A. Mohaseb, N.S.A. El-Gawaad, Y. Trabelsi, Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 10(53), 31765–31772 (2020)
C.S. Boopathi, K. Vinoth Kumar, S. Sheebarani, K. Selvakumar, A. Nabih, Z. Rashed, P. Yupapin, Design of human blood sensor using symmetric dual core photonic crystal fiber. Results Phys. 11, 964–965 (2018)
R.F.D. Santos, E.S.C. Gonzalez, E.C.D. Albuquerque, I.K.G.D. Arruda, A.D. Silva Diniz, J.N. Figueroa, A.P.C. Pereira, Prevalence of anemia in under five-year-old children in a children’s hospital in Recife, Brazil. Rev. Hematol. Hemoter. 33(2), 100–104 (2011)
I.M. Efimov, N.A. Vanyushkin, A.H. Gevorgyan, S.S. Golik, Optical biosensor based on a photonic crystal with a defective layer designed to determine the concentration of SARS-CoV-2 in water. PhysicaScripta 97(5), 55506–55506 (2022)
S.E.S. Abd El-Ghany, W.M. Nouman, Z.S. Matar, Z.A. Zaky, A.H. Aly, Optimized bio-photonic sensor using 1D-photonic crystals as a blood hemoglobin sensor. PhysicaScripta 96(3), 35501–35501 (2020)
M. Friebel, M. Meinke, Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 nm dependent on concentration. Appl. Opt. 45(12), 2838–2842 (2006)
https://refractiveindex.info/?shelf=3d&book=liquids&page=water
S.J. Orfandis, Electromagnetic Waves and Antennas (Rutgers University, New Brunswick, 2016)
P. Yeh, M. Hendry, Optical waves in layered media. Phys. Today 43(1), 77 (1990)
M. Friebel, M.C. Meinke, Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements. J. Biomed. Opt. 10(6), 64019–64019 (2005)
W.M. Nouman, S.E.S. Abd El-Ghany, S.M. Sallam, Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt. Quantum Electron. 52, 1–14 (2020)
S. Edappadikkunnummal, R. Chembra Vasudevan, S. Dinesh, S. Thomas, N.R. Desai, S. Kaniyarakkal, Detection of hemoglobin concentration based on defective one-dimensional photonic crystals. Photonics 9(9), 660 (2022)
S. Bissa, B. Suthar, C. Nayak, A. Bhargava, An improved optical biosensor design using defect/metal multilayer photonic crystal for malaria diagnosis. Results Opt. 9, 100304 (2022)
S. Dinodiya, B. Suthar, A. Bhargava, Detection of haemoglobin concentration in blood samples using nanophotonic biosensor. J. Phys. Conf. Ser. 2335(1), 012014 (2022)
C. Malek, M. Al-Dossari, S.K. Awasthi, M.A. Ismail, N.A. El-Gawaad, W. Sabra, A.H. Aly, High performance biosensor composed of 1D defective photonic crystal for sensing and detection of distinguished blood components. Opt. Quantum Electron. 55(3), 196 (2023)
B. Ankita, S. Bissa. Suthar, A. Bhargava, Revolutionizing optical biosensor with nanocomposite/defect/nanocomposite multilayer 1D photonic crystals. Opt. Quantum Electron. 56, 1116 (2024)
S.G. Babiker, Y. Shuai, M.O. Id-Ahmed, M. Xie, One-dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic applications. WSEAS Trans. Appl. Theor. Mech. 97, 97–103 (2014)
Comments (0)