Characterizing Deficit Accumulation Among Gulf War Era Veterans

Committee on Gulf War and Health, Volume 10: Update of Health Effects of Serving in the Gulf War, Board on the Health of Select Populations, Institute of Medicine, National Academies of Sciences, Engineering, and Medicine. Gulf War and Health: Volume 10: Update of Health Effects of Serving in the Gulf War, 2016. (Cory-Slechta D, Wedge R, eds.). National Academies Press (US); 2016. doi:https://doi.org/10.17226/21840

DeBeer BB, Davidson D, Meyer EC, Kimbrel NA, Gulliver SB, Morissette SB. The association between toxic exposures and chronic multisymptom illness in veterans of the wars of iraq and afghanistan. J Occup Environ Med. 2017;59(1):54–60. doi:https://doi.org/10.1097/JOM.0000000000000922

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandics T, Major D, Fazekas-Pongor V, et al. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. Geroscience. 2023;45(6):3381–3408. doi:https://doi.org/10.1007/s11357-023-00913-3

Article  PubMed  PubMed Central  Google Scholar 

Misra BB. The chemical exposome of human aging. Front Genet. 2020;11:574936. doi:https://doi.org/10.3389/fgene.2020.574936

Article  CAS  PubMed  PubMed Central  Google Scholar 

van der Laan L, Cardenas A, Vermeulen R, et al. Epigenetic aging biomarkers and occupational exposure to benzene, trichloroethylene and formaldehyde. Environ Int. 2022;158:106871. doi:https://doi.org/10.1016/j.envint.2021.106871

Article  CAS  PubMed  Google Scholar 

Liu Y, Wang J, Huang Z, et al. Environmental pollutants exposure: A potential contributor for aging and age-related diseases. Environ Toxicol Pharmacol. 2021;83:103575. doi:https://doi.org/10.1016/j.etap.2020.103575

Article  CAS  PubMed  Google Scholar 

Zundel CG, Heeren T, Grasso CM, et al. Changes in health status in the Ft. Devens Gulf War Veterans Cohort: 1997–2017. Neurosci Insights. 2020;15:1–7. doi:https://doi.org/10.1177/2633105520952675

Article  Google Scholar 

Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8:24. doi:https://doi.org/10.1186/1471-2318-8-24

Article  PubMed  PubMed Central  Google Scholar 

Stolz E, Mayerl H, Hoogendijk EO, Armstrong JJ, Roller-Wirnsberger R, Freidl W. Acceleration of health deficit accumulation in late-life: evidence of terminal decline in frailty index three years before death in the US Health and Retirement Study. Ann Epidemiol. 2021;58:156–161. doi:https://doi.org/10.1016/j.annepidem.2021.03.008

Article  PubMed  Google Scholar 

Theou O, Brothers TD, Peña FG, Mitnitski A, Rockwood K. Identifying common characteristics of frailty across seven scales. J Am Geriatr Soc. 2014;62(5):901–906. doi:https://doi.org/10.1111/jgs.12773

Article  PubMed  Google Scholar 

Mitnitski A, Rockwood K. Aging as a process of deficit accumulation: its utility and origin. Interdiscip Top Gerontol. 2015;40:85–98. doi:https://doi.org/10.1159/000364933

PubMed  Google Scholar 

Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. ScientificWorldJournal. 2001;1:323–336. doi:https://doi.org/10.1100/tsw.2001.58

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rockwood K, Howlett SE. Age-related deficit accumulation and the diseases of ageing. Mech Ageing Dev. 2019;180:107–116. doi:https://doi.org/10.1016/j.mad.2019.04.005

Article  PubMed  Google Scholar 

Dallmeier D, Braisch U, Rapp K, et al. Frailty Index and Sex-Specific 6-Year Mortality in Community-Dwelling Older People: The ActiFE Study. J Gerontol A Biol Sci Med Sci. 2020;75(2):366–373. doi:https://doi.org/10.1093/gerona/glz051

PubMed  Google Scholar 

Porter B, Long K, Rull RP, Dursa EK, Millennium Cohort Study Team. Prevalence of chronic multisymptom illness/Gulf War illness over time among Millennium Cohort participants, 2001 to 2016. J Occup Environ Med. 2020;62(1):4–10. doi:https://doi.org/10.1097/JOM.0000000000001716

Article  PubMed  Google Scholar 

Gifford EJ, Vahey J, Hauser ER, et al. Gulf War illness in the Gulf War Era Cohort and Biorepository: The Kansas and Centers for Disease Control definitions. Life Sci. 2021;278:119454. doi:https://doi.org/10.1016/j.lfs.2021.119454

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoover M, Rotermann M, Sanmartin C, Bernier J. Validation of an index to estimate the prevalence of frailty among community-dwelling seniors. Health Rep. 2013;24(9):10–17.

PubMed  Google Scholar 

Vahey J, Hauser ER, Sims KJ, Helmer DA, Provenzale D, Gifford EJ. Research tool for classifying Gulf War illness using survey responses: Lessons for writing replicable algorithms for symptom-based conditions. Life Sci. 2021;282:119808. doi:https://doi.org/10.1016/j.lfs.2021.119808

Article  CAS  PubMed  Google Scholar 

Lynch SM, Zang E. Bayesian multistate life table methods for large and complex state spaces: development and illustration of a new method. Sociol Methodol. 2022;52(2):254–286. doi:https://doi.org/10.1177/00811750221112398

Article  PubMed  PubMed Central  Google Scholar 

Muniz JO. Multistate life tables using Stata. The Stata Journal. 2020;20(3):721–745. doi:https://doi.org/10.1177/1536867X20953577

Article  Google Scholar 

StataCorp. Stata Statistical Software: Release 18. StataCorp LLC; 2023.

Elder GH, George LK. Age, cohorts, and the life course. In: Shanahan MJ, Mortimer JT, Kirkpatrick Johnson M, eds. Handbook of the Life Course: Volume II. Handbooks of sociology and social research. Springer International Publishing; 2016:59–85. doi:https://doi.org/10.1007/978-3-319-20880-0_3

Bell A. Age period cohort analysis: a review of what we should and shouldn’t do. Ann Hum Biol. 2020;47(2):208–217. doi:https://doi.org/10.1080/03014460.2019.1707872

Article  PubMed  Google Scholar 

Hong JC, Hauser ER, Redding TS, et al. Characterizing chronological accumulation of comorbidities in healthy veterans: a computational approach. Sci Rep. 2021;11(1):8104. doi:https://doi.org/10.1038/s41598-021-85546-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belsky DW, Caspi A, Arseneault L, et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife. 2020;9. doi:https://doi.org/10.7554/eLife.54870

Belsky DW, Caspi A, Corcoran DL, et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. eLife. 2022;11. doi:https://doi.org/10.7554/eLife.73420

Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–367. doi:https://doi.org/10.1016/j.molcel.2012.10.016

Article  CAS  PubMed  Google Scholar 

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. doi:https://doi.org/10.1186/gb-2013-14-10-r115

Article  PubMed  PubMed Central  Google Scholar 

Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–327. doi:https://doi.org/10.18632/aging.101684

Article  CAS  PubMed  Google Scholar 

Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–591. doi:https://doi.org/10.18632/aging.101414

Article  PubMed  Google Scholar 

Sierra F. Geroscience and the challenges of aging societies. Aging Med (Milton). 2019;2(3):132–134. doi:https://doi.org/10.1002/agm2.12082

Article  PubMed  Google Scholar 

Elliott ML, Caspi A, Houts RM, et al. Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy. Nat Aging. 2021;1(3):295–308. doi:https://doi.org/10.1038/s43587-021-00044-4

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif