Elevated urinary albumin predicts increased time in range after initiation of SGLT2 inhibitors in individuals with type 1 diabetes on sensor-augmented pump therapy

Bergenstal RM, Tamborlane WV, Ahmann A, et al. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med. 2010;363(4):311–20.

Article  CAS  PubMed  Google Scholar 

Coronel-Restrepo N, Blanco VM, Palacio A, et al. Real-world effectiveness and safety of sensor-augmented insulin pump therapy in adults with type 1 diabetes: long-term follow-up. Endocrinol Diabetes Nutr (Engl Ed). 2021;68(8):567–72.

PubMed  Google Scholar 

Matsuoka A, Hirota Y, Urai S, et al. Effect of switching from conventional continuous subcutaneous insulin infusion to sensor augmented pump therapy on glycemic profile in Japanese patients with type 1 diabetes. Diabetol Int. 2018;9(3):201–7.

Article  PubMed  PubMed Central  Google Scholar 

Steineck I, Ranjan A, Nørgaard K, et al. Sensor-augmented insulin pumps and hypoglycemia prevention in type 1 diabetes. J Diabetes Sci Technol. 2017;11(1):50–8.

Article  CAS  PubMed  Google Scholar 

Forlenza GP, Li Z, Buckingham BA, et al. Predictive low-glucose suspend reduces hypoglycemia in adults, adolescents, and children with type 1 diabetes in an at-home randomized crossover study: results of the PROLOG trial. Diabetes Care. 2018;41(10):2155–61.

Article  CAS  PubMed  Google Scholar 

Rodbard D. Continuous glucose monitoring: a review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol Ther. 2017;19(S3):S25-37.

Article  PubMed  Google Scholar 

Alotaibi A, Khalifah RA, McAssey K. The efficacy and safety of insulin pump therapy with predictive low glucose suspend feature in decreasing hypoglycemia in children with type 1 diabetes mellitus: a systematic review and meta-analysis. Pediatr Diabetes. 2020;21(7):1256–67.

Article  CAS  PubMed  Google Scholar 

Bergenstal RM, Nimri R, Beck RW, et al. A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): a multicentre, randomised, crossover trial. Lancet. 2021;397(10270):208–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kariyawasam D, Morin C, Casteels K, et al. Hybrid closed-loop insulin delivery versus sensor-augmented pump therapy in children aged 6–12 years: a randomised, controlled, cross-over, non-inferiority trial. Lancet Digit Health. 2022;4(3):e158-168.

Article  CAS  PubMed  Google Scholar 

Collyns OJ, Meier RA, Betts ZL, et al. Improved glycemic outcomes with medtronic minimed advanced hybrid closed-loop delivery: results from a randomized crossover trial comparing automated insulin delivery with predictive low glucose suspend in people with type 1 diabetes. Diabetes Care. 2021;44(4):969–75.

Article  CAS  PubMed  Google Scholar 

Anderson MS, Anderson SM, Breton MD, et al. Hybrid closed-loop control is safe and effective for people with type 1 diabetes who are at moderate to high risk for hypoglycemia. Diabetes Technol Ther. 2019;21(6):356–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lunati ME, Morpurgo PS, Rossi A, et al. Hybrid close-loop systems versus predictive low-glucose suspend and sensor-augmented pump therapy in patients with type 1 diabetes: a single-center cohort study. Front Endocrinol. 2022;13:816599.

Article  Google Scholar 

Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

Article  CAS  PubMed  Google Scholar 

Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.

Article  CAS  PubMed  Google Scholar 

Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

Article  CAS  PubMed  Google Scholar 

Heerspink HJ, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46.

Article  CAS  PubMed  Google Scholar 

Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.

Article  CAS  PubMed  Google Scholar 

Araki E, Watada H, Uchigata Y, et al. Efficacy and safety of dapagliflozin in Japanese patients with inadequately controlled type 1 diabetes (DEPICT-5): 52 week results from a randomized, open-label, phase III clinical trial. Diabetes Obes Metab. 2020;22(4):540–8.

Article  CAS  PubMed  Google Scholar 

Avgerinos I, Manolopoulos A, Michailidis T, et al. Comparative efficacy and safety of glucose-lowering drugs as adjunctive therapy for adults with type 1 diabetes: a systematic review and network meta-analysis. Diabetes Obes Metab. 2021;23(3):822–31.

Article  CAS  PubMed  Google Scholar 

Snaith JR, Holmes-Walker DJ, Greenfield JR. Reducing type 1 diabetes mortality: role for adjunctive therapies? Trends Endocrinol Metab. 2020;31(2):150–64.

Article  CAS  PubMed  Google Scholar 

Rosenstock J, Marquard J, Laffel LM, et al. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care. 2018;41(12):2560–9.

Article  CAS  PubMed  Google Scholar 

Mathieu C, Dandona P, Gillard P, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the DEPICT-2 study): 24 week results from a randomized controlled trial. Diabetes Care. 2018;41(9):1938–46.

Article  CAS  PubMed  Google Scholar 

Dandona P, Mathieu C, Phillip M, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(11):864–76.

Article  CAS  PubMed  Google Scholar 

Chiba K, Nomoto H, Nakamura A, et al. Sodium-glucose cotransporter 2 inhibitors reduce day-to-day glucose variability in patients with type 1 diabetes. J Diabetes Investig. 2021;12(2):176–83.

Article  CAS  PubMed  Google Scholar 

Danne T, Garg S, Peters AL, et al. International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors. Diabetes Care. 2019;42(6):1147–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haidar A, Lovblom LE, Cardinez N, et al. Empagliflozin add-on therapy to closed-loop insulin delivery in type 1 diabetes: a 2 × 2 factorial randomized crossover trial. Nat Med. 2022;28(6):1269–76.

Article  CAS  PubMed  Google Scholar 

Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care. 2019;42:1593–603.

Article  PubMed  PubMed Central  Google Scholar 

Ranjan AG, Rosenlund SV, Hansen TW, et al. Improved time in range over 1 year is associated with reduced albuminuria in individuals with sensor-augmented insulin pump-treated type 1 diabetes. Diabetes Care. 2020;43(11):2882–5.

Article  CAS  PubMed  Google Scholar 

Cherney D, Zinman B, Inzucchi SE, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):610–21.

Article  CAS  PubMed  Google Scholar 

Sugiyama S, Jinnouchi H, Kurinami N, et al. Impact of dapagliflozin therapy on renal protection and kidney morphology in patients with uncontrolled type 2 diabetes mellitus. J Clin Med Res. 2018;10(6):466–77.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif