Ahmad S, Jamil M, Jaworski CC, Luo Y (2023) Comparative transcriptomics of the irradiated melon fly (Zeugodacus cucurbitae) reveal key developmental genes. Front Physiol 14:1112548. https://doi.org/10.3389/fphys.2023.1112548
Article PubMed PubMed Central Google Scholar
Alves GB, De Oliveira EE, Jumbo LOV, Dos Santos GR, Dos Santos MM, Ootani MA, Aguiar RWDS (2023) Genomic–proteomic analysis of a novel Bacillus thuringiensis strain: toxicity against two lepidopteran pests, abundance of Cry1Ac5 toxin, and presence of INHA1 virulence factor. Arch Microbiol 205:143. https://doi.org/10.1007/s00203-023-03479-y
Article CAS PubMed Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021
Article CAS PubMed PubMed Central Google Scholar
Ben-Dov E, Nissan G, Pelleg N, Manasherob R, Boussiba S, Zaritsky A (1999) Refined, circular restriction map of the Bacillus thuringiensis subsp. israelensis plasmid carrying mosquito larvicidal genes. Plasmid 42:186–191. https://doi.org/10.1006/plas.1999.1415
Article CAS PubMed Google Scholar
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Article CAS PubMed PubMed Central Google Scholar
Boukedi H, Tounsi S, Abdelkefi-Mesrati L (2016) Abiotic factors affecting the larvicidal activity of the Bacillus thuringiensis Vip3Aa16 toxin against the lepidopteran pest Ephestia kuehniella. J Plant Dis Protect 123:59–64. https://doi.org/10.1007/s41348-016-0004-5
Boukedi H, Tounsi S, Abdelkefi-Mesrati L (2018) Insecticidal activity, putative binding proteins and histopathological effects of Bacillus thuringiensis Vip3 (459) toxin on the lepidopteran pest Ectomyelois ceratoniae. Acta Trop 182:60–63. https://doi.org/10.1016/j.actatropica.2018.02.006
Article CAS PubMed Google Scholar
Boukedi H, Hman M, Khedher SB, Tounsi S, Abdelkefi-Mesrati L (2020) Promising active bioinsecticides produced by Bacillus thuringiensis strain BLB427. J Adv Res Rev 8:026–035. https://doi.org/10.30574/wjarr.2020.8.1.0358
Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176
Article CAS PubMed Google Scholar
Cao ZL, Tan T, Jiang K, Mei SQ, Hou XY, Cai J (2018) Complete genome sequence of Bacillus thuringiensis L-7601, a wild strain with high production of melanin. J Biotech 275:40–43. https://doi.org/10.1016/j.jbiotec.2018.03.020
Chilcott C, Ellar D (1988) Comparative toxicity of Bacillus thuringiensis var. israelensis crystal proteins in vivo and in vitro. J Gen Microbiol 134:2551–2558. https://doi.org/10.1099/00221287-134-9-2551
Article CAS PubMed Google Scholar
Crickmore N, Berry C, Panneerselvam S, Mishra R, Connor TR, Bonning BC (2021) A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J Invertebr Pathol 186:107438. https://doi.org/10.1016/j.jip.2020.107438
Article CAS PubMed Google Scholar
Da Silva SMB, Silva-Werneck JO, Falcão R, Gomes AC, Fragoso RR, Quezado MT, Monnerat RG (2004) Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests. J Appl Entomol 128:102–107. https://doi.org/10.1046/j.1439-0418.2003.00812.x
De Bon H, Huat J, Parrot L, Sinzogan A, Martin T, Malezieux E, Vayssieres JF (2014) Pesticide risks from fruit and vegetable pest management by small farmers in sub-Saharan Africa. A review. Agron Sustain Dev 34:723–736. https://doi.org/10.1007/s13593-014-0216-7
Dhillon MK, Singh R, Naresh JS, Sharma HC (2005) The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management. J Insect Sci 5:40. https://doi.org/10.1093/jis/5.1.40
Article CAS PubMed PubMed Central Google Scholar
Dimopoulou A, Theologidis I, Benaki D, Koukounia M, Zervakou A, Tzima A, Diallinas G, Skandalis N (2021) Direct antibiotic activity of Bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600. Msphere 6:10–1128. https://doi.org/10.1128/msphere.00376-21
Dos Santos HRM, Argolo CS, Argôlo-Filho RC, Loguercio LL (2019) A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol 19:1–14. https://doi.org/10.1186/s12866-019-1446-2
Fayad N, Kambris Z, El Chamy L, Mahillon J, Kallassy Awad M (2021) A novel antidipteran Bacillus thuringiensis strain: unusual Cry toxin genes in a highly dynamic plasmid environment. Appl Environ Microbiol 87:1–20. https://doi.org/10.1128/AEM.02294-20
Gomaa EZ (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J Microbiol 50:103–111. https://doi.org/10.1007/s12275-012-1343-y
Article CAS PubMed Google Scholar
González-Villarreal SE, García-Montelongo M, Ibarra JE (2020) Insecticidal activity of a Cry1Ca toxin of Bacillus thuringiensis Berliner (Firmicutes: Bacillaceae) and its synergism with the Cyt1Aa toxin against Aedes aegypti (Diptera: Culicidae). J Med Entomol 57:1852–1856. https://doi.org/10.1093/jme/tjaa116
Article CAS PubMed Google Scholar
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435. https://doi.org/10.1093/nar/gkn176
Article CAS PubMed PubMed Central Google Scholar
Guerchicoff A, Ugalde RA, Rubinstein CP (1997) Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 62:2716–2721. https://doi.org/10.1128/aem.63.7.2716-2721.1997
Höfte H, Whiteley H (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255. https://doi.org/10.1128/mr.53.2.242-255.1989
Article PubMed PubMed Central Google Scholar
Kremer FS, McBride AJA, Pinto LDS (2017) Approaches for in silico finishing of microbial genome sequences. Genet Mol Biol 40:553–576. https://doi.org/10.1590/1678-4685-GMB-2016-0230
Article PubMed PubMed Central Google Scholar
Kumar J, Ramlal A, Mallick D, Mishra V (2021) An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 10:1185. https://doi.org/10.3390/plants10061185
Article CAS PubMed PubMed Central Google Scholar
Letowski J, Bravo A, Brousseau R, Masson L (2005) Assessment of cry1 gene contents of Bacillus thuringiensis strains by use of DNA microarrays. Appl Environ Microbiol 71:5391–5398. https://doi.org/10.1128/aem.71.9.5391-5398.2005
Article CAS PubMed PubMed Central Google Scholar
Liu X, Lin X, Li J, Li F, Cao F, Yan R (2020) A novel solid artificial diet for Zeugodacus cucurbitae (Diptera: Tephritidae) larvae with fitness parameters assessed by two-sex life table. J Insect Sci 20:1–21. https://doi.org/10.1093/jisesa/ieaa058
Liu H, Zheng J, Bo D, Yu Y, Ye W, Peng D, Sun M (2022) BtToxin_Digger: a comprehensive and high-throughput pipeline for mining toxin protein genes from Bacillus thuringiensis. Bioinformatics 38:250–251. https://doi.org/10.1093/bioinformatics/btab506
Comments (0)