Anantharaman V, Aravind L (2001) The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends Biochem Sci 26(10):579–582. https://doi.org/10.1016/s0968-0004(01)01968-5
Article PubMed CAS Google Scholar
Anantharaman V, Aravind L (2005) MEDS and PocR are novel domains with a predicted role in sensing simple hydrocarbon derivatives in prokaryotic signal transduction systems. Bioinformatics 21(12):2805–2811. https://doi.org/10.1093/bioinformatics/bti418
Article PubMed CAS Google Scholar
Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22(12):458–459. https://doi.org/10.1016/s0968-0004(97)01148-1
Article PubMed CAS Google Scholar
Bahn YS (2008) Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot Cell 7(12):2017–2036. https://doi.org/10.1128/EC.00323-08
Article PubMed PubMed Central CAS Google Scholar
Bahn YS, Kojima K, Cox GM, Heitman J (2006) A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell 17:3122–3135. https://doi.org/10.1091/mbc.E06-02-0113
Article PubMed PubMed Central CAS Google Scholar
Bayram O, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on aspergillus nidulans photosensory systems. Fungal Genet Biol 47(11):900–908. https://doi.org/10.1016/j.fgb.2010.05.008
Article PubMed CAS Google Scholar
Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838. https://doi.org/10.1016/j.cub.2005.08.061
Article PubMed CAS Google Scholar
Bourret RB (2010) Receiver domain structure and function in response regulator proteins. Curr Opin Microbiol 13(2):142–149. https://doi.org/10.1016/j.mib.2010.01.015
Boyce KJ, Schreider L, Kirszenblat L, Andrianopoulos A (2011) The two-component histidine kinases DrkA and SlnA are required for in vivo growth in the human pathogen Penicillium Marneffei. Mol Microbiol 82:1164–1184. https://doi.org/10.1111/j.1365-2958.2011.07878.x
Article PubMed CAS Google Scholar
Cai E, Sun S, Deng Y, Huang P, Sun X, Wang Y, Chang C, Jiang Z (2021) Histidine kinase Sln1 and cAMP/PKA signaling pathways antagonistically regulate sporisorium scitamineum mating and virulence via transcription factor Prf1. J Fungi 7(8):610. https://doi.org/10.3390/jof7080610
Cairns TC, Studholme DJ, Talbot NJ, Haynes K (2016) New and improved techniques for the study of pathogenic fungi. Trends Microbiol 24(1):35–50. https://doi.org/10.1016/j.tim.2015.09.008
Article PubMed CAS Google Scholar
Calcáneo-Hernández G, Landeros-Jaime F, Cervantes-Chávez JA, Mendoza-Mendoza A, Esquivel-Naranjo EU (2023) Osmotic stress responses, Cell Wall Integrity, and Conidiation are regulated by a histidine kinase sensor in Trichoderma Atroviride. J Fungi (Basel) 9(9):939. https://doi.org/10.3390/jof9090939
Article PubMed PubMed Central CAS Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973. https://doi.org/10.1093/bioinformatics/btp348
Article PubMed PubMed Central CAS Google Scholar
Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2(6):1151–1161. https://doi.org/10.1128/EC.2.6.1151-1161.2003
Article PubMed PubMed Central CAS Google Scholar
Chapeland-Leclerc F, Dilmaghani A, Ez-Zaki L et al (2015) Systematic gene deletion and functional characterization of histidine kinase phosphorelay receptors (HKRs) in the human pathogenic fungus aspergillus fumigatus. Fungal Genet Biol 84:1–11. https://doi.org/10.1016/j.fgb.2015.09.005
Article PubMed CAS Google Scholar
Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA (2002) fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med Mycol 40(3):259–262. https://doi.org/10.1080/mmy.40.3.259.262
Article PubMed CAS Google Scholar
Defosse TA, Sharma A, Mondal AK et al (2015) Hybrid histidine kinases in pathogenic fungi. Mol Microbiol 95(6):914–924. https://doi.org/10.1111/mmi.12911
Article PubMed CAS Google Scholar
Feng Y, Bian S, Pang Z, Wen Y, Calderone R, Li D, Shi D (2022) Deletion of non-histidine domains of histidine kinase CHK1 diminishes the infectivity of Candida albicans in an oral mucosal model. Front Microbiol 13:855651. https://doi.org/10.3389/fmicb.2022.855651
Article PubMed PubMed Central Google Scholar
Fihn CA, Carlson EE (2021) Targeting a highly conserved domain in bacterial histidine kinases to generate inhibitors with broad spectrum activity. Curr Opin Microbiol 61:107–114. https://doi.org/10.1016/j.mib.2021.03.007
Article PubMed PubMed Central CAS Google Scholar
Galperin MY, Makarova KS, Wolf YI, Koonin EV (2018) Phyletic distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems. J Bacteriol 200(7):e00681–e00617. https://doi.org/10.1128/JB.00681-17
Article PubMed PubMed Central CAS Google Scholar
Gao R, Bouillet S, Stock AM (2019) Structural basis of Response Regulator function. Annu Rev Microbiol 8:73:175–197. https://doi.org/10.1146/annurev-micro-020518-115931
Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K et al (2013) NikA/TcsC histidine kinase is involved in Conidiation, Hyphal morphology, and responses to osmotic stress and Antifungal Chemicals in aspergillus fumigatus. PLoS ONE 8(12):e80881. https://doi.org/10.1371/journal.pone.0080881
Article PubMed PubMed Central CAS Google Scholar
Hargreaves KR, Kropinski AM, Clokie MR (2014) What does the talking? Quorum sensing signalling genes discovered in a bacteriophage genome. PLoS ONE 9(1):e85131. https://doi.org/10.1371/journal.pone.0085131
Article PubMed PubMed Central CAS Google Scholar
Hérivaux A, So YS, Gastebois A et al (2016) Major Sensing Proteins in pathogenic Fungi: the hybrid histidine kinase family. PLoS Pathog 12(7):e1005683. https://doi.org/10.1371/journal.ppat.1005683
Article PubMed PubMed Central CAS Google Scholar
Hérivaux A, Dugé de Bernonville T, Roux C, Clastre M, Courdavault V, Gastebois A, Bouchara JP, James TY, Latgé JP, Martin F, Papon N (2017) The identification of phytohormone receptor homologs in early diverging Fungi suggests a role for plant sensing in Land colonization by Fungi. mBio 8(1):e01739–e01716. https://doi.org/10.1128/mBio.01739-16
Article PubMed PubMed Central Google Scholar
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LP (2021) Histidine kinases: diverse functions in Plant Development and responses to environmental conditions. Annu Rev Plant Biol 72:297–323. https://doi.org/10.1146/annurev-arplant-080720-093057
Article PubMed CAS Google Scholar
Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372. https://doi.org/10.1128/MMBR.66.2.300-372.2002
Comments (0)